(\mathcal{N}\)IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs

Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular ch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Pfeiffer, Kai, Escande, Adrien, Righetti, Ludovic
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 04.08.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for dense HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the computationally efficient nullspace method as it requires only a single matrix factorization per solver iteration instead of two as it is the case for other IPM formulations. We show that the resulting normal equations can be expressed in least-squares form. This avoids the formation of the quadratic Lagrangian Hessian and can possibly maintain high levels of sparsity. Our solver reliably solves ill-posed instantaneous hierarchical robot control problems without exhibiting the large variations in computation time seen in active-set methods.
AbstractList Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for dense HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the computationally efficient nullspace method as it requires only a single matrix factorization per solver iteration instead of two as it is the case for other IPM formulations. We show that the resulting normal equations can be expressed in least-squares form. This avoids the formation of the quadratic Lagrangian Hessian and can possibly maintain high levels of sparsity. Our solver reliably solves ill-posed instantaneous hierarchical robot control problems without exhibiting the large variations in computation time seen in active-set methods.
Author Pfeiffer, Kai
Righetti, Ludovic
Escande, Adrien
Author_xml – sequence: 1
  givenname: Kai
  surname: Pfeiffer
  fullname: Pfeiffer, Kai
– sequence: 2
  givenname: Adrien
  surname: Escande
  fullname: Escande, Adrien
– sequence: 3
  givenname: Ludovic
  surname: Righetti
  fullname: Righetti, Ludovic
BookMark eNotj09LwzAchoMoOOc-gLeAFz2k5k-TtN7GmG7QaWE7DsavbeIytsYlnQzE725BTw_v5Xl5btBl61uD0B2jSZpJSZ8gnN1XwhlVCROK8gs04EIwkqWcX6NRjDtKKVeaSykGqHpYH6Db1rD_fvtZP87LBZkVy_IZj1s8tdbVzrQdnredCc4HUnrXz4Xptr7B1gc8cyZAqLeuN-DCQOzI8niCYCIug_8IcIi36MrCPprRP4do9TJdTWakeH-dT8YFAck5yYRSoJuqorXJacU0UEhtzrNKWpEznTdSq0bQmlUUVGqszUHRvlJboTPZiCG6_9N-Bn88mdhtdv4U2v5xw2UqteYp4-IXv6VXZg
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.48550/arxiv.2106.13602
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ID FETCH-LOGICAL-a522-8366a7dbb0ce90b17a0a4f928b5f39179d576d30c1b0a64eff9a601067f3785d3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:33:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-8366a7dbb0ce90b17a0a4f928b5f39179d576d30c1b0a64eff9a601067f3785d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2545772412?pq-origsite=%requestingapplication%
PQID 2545772412
PQPubID 2050157
ParticipantIDs proquest_journals_2545772412
PublicationCentury 2000
PublicationDate 20230804
PublicationDateYYYYMMDD 2023-08-04
PublicationDate_xml – month: 08
  year: 2023
  text: 20230804
  day: 04
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.840015
SecondaryResourceType preprint
Snippet Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Computational efficiency
Computing time
Iterative methods
Least squares
Optimization
Robotics
Solvers
Title (\mathcal{N}\)IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs
URI https://www.proquest.com/docview/2545772412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1qFVz5xjezcKGL6DzSycSNqFRaaIdgXSgUSl6DA9JpZ9oiiP_uTRwVN25chmyGJHNz7rkn9yB0QlkmMxIGcHhFhkkgCU6k1FgbAQfIMKYT5cwmaJomj4-M14RbVcsqv2KiC9S6UJYjv4BEpglIkATh1XiCrWuUra7WFhqLqGG7JAROutf_5ljCmAJijj6Lma5114UoX_P5OeQ5sRV4OTLldwh298rd2n-_aB01uBibcgMtmNEmWnF6TlVtIXk6ACj6DBvwlr4Pzjq8h9vdPr_0rkdey3WNgMvGc3RgXpSYFzkMe85N2gMY67Vz-zDZ-aS8eF3r74P7k5l9q-TxT0VXtY0e7loPt21c2ylgASALJ1EcC6ql9JVhvgyo8AXJWJjIZhZB0sY0pB468lUgfRETk2VMuCIszSKaNHW0g5ZGxcjsIg9QhtGBkZQFhigCGUcEIZ_4hFKlpEz20OHXig3rX6Ia_izX_t_TB2jVero7lR05REvTcmaO0LKaT_OqPEaNm1bK74_dTsOId3r86QNVy7Pv
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9tAEB7SpCU9JX2RNI_uoYX2sI0ea602UEpIHGxiG4F9yMFg9iUqCFIi2XkQ8pPyHzO7jhN66S2HHoVAIM1o5puZb_YD-MpFrnIWhei8MqcsVIymShlqrEQHskKYVHuxCT4YpKenIluC-8UujKNVLmKiD9Sm0q5HvoeFTAuRIAuj3-cX1KlGuenqQkJj7hYn9uYKS7bmV_cI7fstio7bo8MOfVQVoBKxBk3jJJHcKBVoKwIVchlIlosoVa08xtpFGETgJg50qAKZMJvnQvpZJM9jnrZMjI99BSuIIiLhmYLDp5ZOlHAE6PF8dupPCtuT9XVx-RPLqsTxyXzv5u-I79PY8dp_9gHWYSWT57Z-B0u2fA9vPFtVNx9AfR8j0P6D7nU7uBv_6GZ92ukNs31yUJK2PxMDUynxzc6iqmlWFXjZ91rZBEE66RRu7dqrwJyRnlMvosOLmdvEItmcr9Z8hNFLvNUnWC6r0m4AQQxlTWgVF6FlmmE9FWNCYwHjXGul0k3YXhho8vjDN5Nn63z-9-0vsNoZ9XuTXndwsgVvnXq95xOybVie1jO7A6_15bRo6l3vXAQmL2zLB3UDC2M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28%5Cmathcal%7BN%7D%5C%29IPM-HLSP%3A+An+Efficient+Interior-Point+Method+for+Hierarchical+Least-Squares+Programs&rft.jtitle=arXiv.org&rft.au=Pfeiffer%2C+Kai&rft.au=Escande%2C+Adrien&rft.au=Righetti%2C+Ludovic&rft.date=2023-08-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2106.13602