A robust adaptive model predictive control framework for nonlinear uncertain systems

In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Köhler, Johannes, Kötting, Peter, Soloperto, Raffaele, Allgöwer, Frank, Müller, Matthias A
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.10.2020
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for the construction of the tube in a robust MPC scheme. The resulting RAMPC framework ensures robust recursive feasibility and robust constraint satisfaction, while allowing for less conservative operation compared to robust MPC schemes without model/parameter adaptation. Furthermore, by using an additional mean-squared point estimate in the objective function the framework ensures finite-gain \(\mathcal{L}_2\) stability w.r.t. additive disturbances. As a first contribution we derive suitable monotonicity and non-increasing properties on general parameter estimation algorithms and tube/set based RAMPC schemes that ensure robust recursive feasibility and robust constraint satisfaction under recursive model updates. Then, as the main contribution of this paper, we provide similar conditions for a tube based formulation that is parametrized using an incremental Lyapunov function, a scalar contraction rate and a function bounding the uncertainty. With this result, we can provide simple constructive designs for different RAMPC schemes with varying computational complexity and conservatism. As a corollary, we can demonstrate that state of the art formulations for nonlinear RAMPC are a special case of the proposed framework. We provide a numerical example that demonstrates the flexibility of the proposed framework and showcase improvements compared to state of the art approaches.
AbstractList In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for the construction of the tube in a robust MPC scheme. The resulting RAMPC framework ensures robust recursive feasibility and robust constraint satisfaction, while allowing for less conservative operation compared to robust MPC schemes without model/parameter adaptation. Furthermore, by using an additional mean-squared point estimate in the objective function the framework ensures finite-gain \(\mathcal{L}_2\) stability w.r.t. additive disturbances. As a first contribution we derive suitable monotonicity and non-increasing properties on general parameter estimation algorithms and tube/set based RAMPC schemes that ensure robust recursive feasibility and robust constraint satisfaction under recursive model updates. Then, as the main contribution of this paper, we provide similar conditions for a tube based formulation that is parametrized using an incremental Lyapunov function, a scalar contraction rate and a function bounding the uncertainty. With this result, we can provide simple constructive designs for different RAMPC schemes with varying computational complexity and conservatism. As a corollary, we can demonstrate that state of the art formulations for nonlinear RAMPC are a special case of the proposed framework. We provide a numerical example that demonstrates the flexibility of the proposed framework and showcase improvements compared to state of the art approaches.
Author Köhler, Johannes
Soloperto, Raffaele
Allgöwer, Frank
Kötting, Peter
Müller, Matthias A
Author_xml – sequence: 1
  givenname: Johannes
  surname: Köhler
  fullname: Köhler, Johannes
– sequence: 2
  givenname: Peter
  surname: Kötting
  fullname: Kötting, Peter
– sequence: 3
  givenname: Raffaele
  surname: Soloperto
  fullname: Soloperto, Raffaele
– sequence: 4
  givenname: Frank
  surname: Allgöwer
  fullname: Allgöwer, Frank
– sequence: 5
  givenname: Matthias
  surname: Müller
  middlename: A
  fullname: Müller, Matthias A
BookMark eNotj81KxDAURoMoOI7zAO4CrluTm6ZJl8PgHwy46X7IJDfQsU1q0o769hZ19cFZnMN3Qy5DDEjIHWdlpaVkDyZ9deeSN5yXDHTTXJAVCMELXQFck03OJ8YY1AqkFCvSbmmKxzlP1DgzTt0Z6RAd9nRM6Dr7C2wMU4o99ckM-BnTO_Ux0aXbdwFNonOwmCbTBZq_84RDviVX3vQZN_-7Ju3TY7t7KfZvz6-77b4wEqBQ3DGJyJzwwisppVPAqqNXnmmFqJSrrUBda-TcM7BWGZC1RKuB16aWYk3u_7Rjih8z5ulwinMKS_EAgouqEstR8QM2KVSn
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1911.02899
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-71d05ee0d3f3f7555d7204bf7f087ee77d6c3e868e11f02cc7a2565ec8216a653
IEDL.DBID M7S
IngestDate Mon Jun 30 09:30:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-71d05ee0d3f3f7555d7204bf7f087ee77d6c3e868e11f02cc7a2565ec8216a653
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2313443002?pq-origsite=%requestingapplication%
PQID 2313443002
PQPubID 2050157
ParticipantIDs proquest_journals_2313443002
PublicationCentury 2000
PublicationDate 20201020
PublicationDateYYYYMMDD 2020-10-20
PublicationDate_xml – month: 10
  year: 2020
  text: 20201020
  day: 20
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7380618
SecondaryResourceType preprint
Snippet In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Adaptive control
Algorithms
Constraint modelling
Disturbances
Feasibility
Liapunov functions
Nonlinear control
Nonlinear systems
Parameter estimation
Predictive control
Robust control
Robustness (mathematics)
Uncertainty
Title A robust adaptive model predictive control framework for nonlinear uncertain systems
URI https://www.proquest.com/docview/2313443002
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BCxIT3-KjVB5YTZM4sZ0JAWoFA1UEHcpU-VPqUkLSVvx8bCeFAYmFMU6kWLZ893z39B7AtZUyNlLlmFkpcCpMinOXdrHRRFNiueU6DWYTbDzm02letAW3uqVVbmJiCNT6Xfka-cDhEJKmxB3g2_IDe9co311tLTS2oetVEuJA3Xv9rrEklDnETJpmZpDuGojqc76-cZcUL9XJ8_xXCA55ZbT_3xkdQLcQpakOYcssjmA38DlVfQyTO1S9y1W9REKL0oc0FDxvUFn5zkwYaFnqyG74WcgBWLRotDNEhVzGa_gCqJF7rk9gMhpOHh5xa6CAhYNVmMU6yoyJNLHEsizLtHekkZbZiDNjGNNUEcMpN3Fso0QpJhwAyoziSUwFzcgpdNxPzRmgSBGZU_eRdvBD00SkmjEmaUq11TpW59DbrNGsPQT17GeBLv5-fQl7ib_GupSQRD3oLKuVuYIdtV7O66oP3fvhuHjph711T8XTc_H2BdvXsYQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHG0MRO7GRACAFVq5aqEh26VY4fUpe2JG2BH8V_5Ow0MCCxdWBNIlnO2Xff-T7fh9CVSdNApzLxuEmFFwodegmEXU8rqhg1sYlV6MQmeK8XD4dJv4I-y7swllZZ-kTnqNVU2jPyBuAQGoYUNvDd7NWzqlG2ulpKaBTLoqM_3iBly2_bj2Dfa0KaT4OHlrdSFfAEYA2PB8qPtPYVNdTwKIqUlWlJDTd-zLXmXDFJdcxiHQTGJ1JyAagg0jImARPMikSAx68BiiCJYwq-fB_pEMYBoNOiduo6hTVE9j5e3kBOZDuDxknyy-O7MNbc-Wc_YBfV-mKmsz1U0ZN9tOnYqjI_QIN7nE3TRT7HQomZddjYKfrgWWbrTu7BioOPTck-wwDP8aToDCIyDPG8YEPgopl1fogG65jHEarCoPoYYV_SNGHwkQJwpRgRoeKcpyxkyigVyBNUL00yWm3xfPRjj9O_X1-irdbguTvqtnudM7RNbMIOwY_4dVSdZwt9jjbkcj7Oswu3nDAardl6Xx74CRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+adaptive+model+predictive+control+framework+for+nonlinear+uncertain+systems&rft.jtitle=arXiv.org&rft.au=K%C3%B6hler%2C+Johannes&rft.au=K%C3%B6tting%2C+Peter&rft.au=Soloperto%2C+Raffaele&rft.au=Allg%C3%B6wer%2C+Frank&rft.date=2020-10-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1911.02899