A robust adaptive model predictive control framework for nonlinear uncertain systems
In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
20.10.2020
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for the construction of the tube in a robust MPC scheme. The resulting RAMPC framework ensures robust recursive feasibility and robust constraint satisfaction, while allowing for less conservative operation compared to robust MPC schemes without model/parameter adaptation. Furthermore, by using an additional mean-squared point estimate in the objective function the framework ensures finite-gain \(\mathcal{L}_2\) stability w.r.t. additive disturbances. As a first contribution we derive suitable monotonicity and non-increasing properties on general parameter estimation algorithms and tube/set based RAMPC schemes that ensure robust recursive feasibility and robust constraint satisfaction under recursive model updates. Then, as the main contribution of this paper, we provide similar conditions for a tube based formulation that is parametrized using an incremental Lyapunov function, a scalar contraction rate and a function bounding the uncertainty. With this result, we can provide simple constructive designs for different RAMPC schemes with varying computational complexity and conservatism. As a corollary, we can demonstrate that state of the art formulations for nonlinear RAMPC are a special case of the proposed framework. We provide a numerical example that demonstrates the flexibility of the proposed framework and showcase improvements compared to state of the art approaches. |
|---|---|
| AbstractList | In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty and additive disturbances. Set-membership estimation is used to provide accurate bounds on the parametric uncertainty, which are employed for the construction of the tube in a robust MPC scheme. The resulting RAMPC framework ensures robust recursive feasibility and robust constraint satisfaction, while allowing for less conservative operation compared to robust MPC schemes without model/parameter adaptation. Furthermore, by using an additional mean-squared point estimate in the objective function the framework ensures finite-gain \(\mathcal{L}_2\) stability w.r.t. additive disturbances. As a first contribution we derive suitable monotonicity and non-increasing properties on general parameter estimation algorithms and tube/set based RAMPC schemes that ensure robust recursive feasibility and robust constraint satisfaction under recursive model updates. Then, as the main contribution of this paper, we provide similar conditions for a tube based formulation that is parametrized using an incremental Lyapunov function, a scalar contraction rate and a function bounding the uncertainty. With this result, we can provide simple constructive designs for different RAMPC schemes with varying computational complexity and conservatism. As a corollary, we can demonstrate that state of the art formulations for nonlinear RAMPC are a special case of the proposed framework. We provide a numerical example that demonstrates the flexibility of the proposed framework and showcase improvements compared to state of the art approaches. |
| Author | Köhler, Johannes Soloperto, Raffaele Allgöwer, Frank Kötting, Peter Müller, Matthias A |
| Author_xml | – sequence: 1 givenname: Johannes surname: Köhler fullname: Köhler, Johannes – sequence: 2 givenname: Peter surname: Kötting fullname: Kötting, Peter – sequence: 3 givenname: Raffaele surname: Soloperto fullname: Soloperto, Raffaele – sequence: 4 givenname: Frank surname: Allgöwer fullname: Allgöwer, Frank – sequence: 5 givenname: Matthias surname: Müller middlename: A fullname: Müller, Matthias A |
| BookMark | eNotj81KxDAURoMoOI7zAO4CrluTm6ZJl8PgHwy46X7IJDfQsU1q0o769hZ19cFZnMN3Qy5DDEjIHWdlpaVkDyZ9deeSN5yXDHTTXJAVCMELXQFck03OJ8YY1AqkFCvSbmmKxzlP1DgzTt0Z6RAd9nRM6Dr7C2wMU4o99ckM-BnTO_Ux0aXbdwFNonOwmCbTBZq_84RDviVX3vQZN_-7Ju3TY7t7KfZvz6-77b4wEqBQ3DGJyJzwwisppVPAqqNXnmmFqJSrrUBda-TcM7BWGZC1RKuB16aWYk3u_7Rjih8z5ulwinMKS_EAgouqEstR8QM2KVSn |
| ContentType | Paper |
| Copyright | 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1911.02899 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-71d05ee0d3f3f7555d7204bf7f087ee77d6c3e868e11f02cc7a2565ec8216a653 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:30:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-71d05ee0d3f3f7555d7204bf7f087ee77d6c3e868e11f02cc7a2565ec8216a653 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2313443002?pq-origsite=%requestingapplication% |
| PQID | 2313443002 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2313443002 |
| PublicationCentury | 2000 |
| PublicationDate | 20201020 |
| PublicationDateYYYYMMDD | 2020-10-20 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201020 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2020 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7380618 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we present a tube-based framework for robust adaptive model predictive control (RAMPC) for nonlinear systems subject to parametric uncertainty... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Adaptive control Algorithms Constraint modelling Disturbances Feasibility Liapunov functions Nonlinear control Nonlinear systems Parameter estimation Predictive control Robust control Robustness (mathematics) Uncertainty |
| Title | A robust adaptive model predictive control framework for nonlinear uncertain systems |
| URI | https://www.proquest.com/docview/2313443002 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BCxIT3-KjVB5YTZM4sZ0JAWoFA1UEHcpU-VPqUkLSVvx8bCeFAYmFMU6kWLZ893z39B7AtZUyNlLlmFkpcCpMinOXdrHRRFNiueU6DWYTbDzm02letAW3uqVVbmJiCNT6Xfka-cDhEJKmxB3g2_IDe9co311tLTS2oetVEuJA3Xv9rrEklDnETJpmZpDuGojqc76-cZcUL9XJ8_xXCA55ZbT_3xkdQLcQpakOYcssjmA38DlVfQyTO1S9y1W9REKL0oc0FDxvUFn5zkwYaFnqyG74WcgBWLRotDNEhVzGa_gCqJF7rk9gMhpOHh5xa6CAhYNVmMU6yoyJNLHEsizLtHekkZbZiDNjGNNUEcMpN3Fso0QpJhwAyoziSUwFzcgpdNxPzRmgSBGZU_eRdvBD00SkmjEmaUq11TpW59DbrNGsPQT17GeBLv5-fQl7ib_GupSQRD3oLKuVuYIdtV7O66oP3fvhuHjph711T8XTc_H2BdvXsYQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_Eo4AHG0MRO7GRACAFVq5aqEh26VY4fUpe2JG2BH8V_5Ow0MCCxdWBNIlnO2Xff-T7fh9CVSdNApzLxuEmFFwodegmEXU8rqhg1sYlV6MQmeK8XD4dJv4I-y7swllZZ-kTnqNVU2jPyBuAQGoYUNvDd7NWzqlG2ulpKaBTLoqM_3iBly2_bj2Dfa0KaT4OHlrdSFfAEYA2PB8qPtPYVNdTwKIqUlWlJDTd-zLXmXDFJdcxiHQTGJ1JyAagg0jImARPMikSAx68BiiCJYwq-fB_pEMYBoNOiduo6hTVE9j5e3kBOZDuDxknyy-O7MNbc-Wc_YBfV-mKmsz1U0ZN9tOnYqjI_QIN7nE3TRT7HQomZddjYKfrgWWbrTu7BioOPTck-wwDP8aToDCIyDPG8YEPgopl1fogG65jHEarCoPoYYV_SNGHwkQJwpRgRoeKcpyxkyigVyBNUL00yWm3xfPRjj9O_X1-irdbguTvqtnudM7RNbMIOwY_4dVSdZwt9jjbkcj7Oswu3nDAardl6Xx74CRY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+adaptive+model+predictive+control+framework+for+nonlinear+uncertain+systems&rft.jtitle=arXiv.org&rft.au=K%C3%B6hler%2C+Johannes&rft.au=K%C3%B6tting%2C+Peter&rft.au=Soloperto%2C+Raffaele&rft.au=Allg%C3%B6wer%2C+Frank&rft.date=2020-10-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1911.02899 |