Double Trouble? Impact and Detection of Duplicates in Face Image Datasets

Various face image datasets intended for facial biometrics research were created via web-scraping, i.e. the collection of images publicly available on the internet. This work presents an approach to detect both exactly and nearly identical face image duplicates, using file and image hashes. The appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Schlett, Torsten, Rathgeb, Christian, Tapia, Juan, Busch, Christoph
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 25.01.2024
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Various face image datasets intended for facial biometrics research were created via web-scraping, i.e. the collection of images publicly available on the internet. This work presents an approach to detect both exactly and nearly identical face image duplicates, using file and image hashes. The approach is extended through the use of face image preprocessing. Additional steps based on face recognition and face image quality assessment models reduce false positives, and facilitate the deduplication of the face images both for intra- and inter-subject duplicate sets. The presented approach is applied to five datasets, namely LFW, TinyFace, Adience, CASIA-WebFace, and C-MS-Celeb (a cleaned MS-Celeb-1M variant). Duplicates are detected within every dataset, with hundreds to hundreds of thousands of duplicates for all except LFW. Face recognition and quality assessment experiments indicate a minor impact on the results through the duplicate removal. The final deduplication data is publicly available.
AbstractList Various face image datasets intended for facial biometrics research were created via web-scraping, i.e. the collection of images publicly available on the internet. This work presents an approach to detect both exactly and nearly identical face image duplicates, using file and image hashes. The approach is extended through the use of face image preprocessing. Additional steps based on face recognition and face image quality assessment models reduce false positives, and facilitate the deduplication of the face images both for intra- and inter-subject duplicate sets. The presented approach is applied to five datasets, namely LFW, TinyFace, Adience, CASIA-WebFace, and C-MS-Celeb (a cleaned MS-Celeb-1M variant). Duplicates are detected within every dataset, with hundreds to hundreds of thousands of duplicates for all except LFW. Face recognition and quality assessment experiments indicate a minor impact on the results through the duplicate removal. The final deduplication data is publicly available.
Author Busch, Christoph
Schlett, Torsten
Rathgeb, Christian
Tapia, Juan
Author_xml – sequence: 1
  givenname: Torsten
  surname: Schlett
  fullname: Schlett, Torsten
– sequence: 2
  givenname: Christian
  surname: Rathgeb
  fullname: Rathgeb, Christian
– sequence: 3
  givenname: Juan
  surname: Tapia
  fullname: Tapia, Juan
– sequence: 4
  givenname: Christoph
  surname: Busch
  fullname: Busch, Christoph
BookMark eNotjsFOhDAURRujieM4H-CuiWuwfaWlrIwZHCWZxA37yWt5GCYISIvx8yXq6mxuzj037HIYB2LsToo0s1qLB5y_u68UMiFTmQlrL9gGlJKJzQCu2S6EsxACTA5aqw2rynFxPfF6_uUjrz4m9JHj0PCSIvnYjQMfW14uU995jBR4N_ADelqn-E68xIiBYrhlVy32gXb_3LL68FzvX5Pj20u1fzomqAES0yqdF075xhBa7Z3MrSy8yNQaWcgCrSsoR2yEVU56D61wYBtJOUhvXK627P5PO83j50Ihns7jMg_r4wkKaY3R2oD6AZkBTos
ContentType Paper
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2401.14088
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-6f3579b3cd6ea85cb17819c043233919a8b9e7aad083b1cc2f0b28d1e721c6b73
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:16:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-6f3579b3cd6ea85cb17819c043233919a8b9e7aad083b1cc2f0b28d1e721c6b73
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2918665562?pq-origsite=%requestingapplication%
PQID 2918665562
PQPubID 2050157
ParticipantIDs proquest_journals_2918665562
PublicationCentury 2000
PublicationDate 20240125
PublicationDateYYYYMMDD 2024-01-25
PublicationDate_xml – month: 01
  year: 2024
  text: 20240125
  day: 25
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8585418
SecondaryResourceType preprint
Snippet Various face image datasets intended for facial biometrics research were created via web-scraping, i.e. the collection of images publicly available on the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Datasets
Face recognition
Image quality
Quality assessment
Title Double Trouble? Impact and Detection of Duplicates in Face Image Datasets
URI https://www.proquest.com/docview/2918665562
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwFLSgBYmJb_FRKg-soUmcxPFUCUpFB6oIOpSpsl9sqRJKS5JW_Hye3RSYWJiiKBkiO7q7vHd5R8itlsYHA9YqpRIvijl4qU59z4jYID-IiMvIhU3w8TidTkXWFNyqxla5xUQH1PkCbI28Fwo3mg3pur_88GxqlO2uNhEau6RtJ5VFLdK-fxxnL99VljDhqJnZpp3phnf1ZPk5X98hkQWIEn6TuPIbhB2zDA__-0xHpJ3JpS6PyY4uTsi-c3RCdUpGKI3Vu6aT0h37dOT-h6SyyOlA186BVdCFoYPVpoWtKzov6FCCxlsRZehA1khxdXVGJsPHycOT1-QmeBLVlJcYFnOhGOSJlmkMKuBI-2Bn7zEmAiFTJTSXMkf1pQKA0PgqTPNA48cgJIqzc9IqFoW-IFTwMEohYLjTLMpNpPzYgMo5ihJjUKtdks52YWbNu1_Nflbl6u_L1-QgRIlgCxph3CGtulzpG7IH63peld1mK7vWjfmKZ9noOXv7Arp2q4A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4VCoKJt3gU8ABjaOI8HA-IgVIRtVSV6NCtsh1bqoTSkqQ8fhT_kYvbAhMbA1OGRFGUO3_f57vzHcCFFsZVRlWlUjJygpApJ9ax6xgeGuQHHjAR2GETrNeLh0Per8HH8ixMVVa5xEQL1OlEVTHyJuW2NRvS9c302ammRlXZ1eUIjblbdPT7K27Ziuukhfa9pLR9N7i9dxZTBRyBWsOJjB8yLn2VRlrEoZIeQ1JUVWc63-ceF7HkmgmRojaRnlLUuJLGqadxq6QiyXx87QrUgwr8baXg41dIh0YMBbo_z53aTmFNkb-NX66QNT2EJHcx3uUn4lsaa2_9sx-wDfW-mOp8B2o624V1W62qij1IUPbLJ00Gub3ekMSe9SQiS0lLl7a6LCMTQ1qzeXpeF2SckbZQGh9FBCUtUSJ9l8U-DP7i4w9gNZtk-hAIZzSIleejF_tBagLphkbJlKHgMgZ16BE0lnYYLdZ1Mfo2wvHvt89h437w0B11k17nBDYpSqEqcEPDBqyW-Uyfwpp6KcdFfmZ9iMDoj032CQCvArs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double+Trouble%3F+Impact+and+Detection+of+Duplicates+in+Face+Image+Datasets&rft.jtitle=arXiv.org&rft.au=Schlett%2C+Torsten&rft.au=Rathgeb%2C+Christian&rft.au=Tapia%2C+Juan&rft.au=Busch%2C+Christoph&rft.date=2024-01-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2401.14088