VrdONE: One-stage Video Visual Relation Detection
Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights into video scenes beyond basic visual tasks. Traditional methods for VidVRD, challenged by its complexity, typically split the task into two p...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
18.08.2024
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights into video scenes beyond basic visual tasks. Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation categories are present and another for determining their temporal boundaries. This split overlooks the inherent connection between these elements. Addressing the need to recognize entity pairs' spatiotemporal interactions across a range of durations, we propose VrdONE, a streamlined yet efficacious one-stage model. VrdONE combines the features of subjects and objects, turning predicate detection into 1D instance segmentation on their combined representations. This setup allows for both relation category identification and binary mask generation in one go, eliminating the need for extra steps like proposal generation or post-processing. VrdONE facilitates the interaction of features across various frames, adeptly capturing both short-lived and enduring relations. Additionally, we introduce the Subject-Object Synergy (SOS) module, enhancing how subjects and objects perceive each other before combining. VrdONE achieves state-of-the-art performances on the VidOR benchmark and ImageNet-VidVRD, showcasing its superior capability in discerning relations across different temporal scales. The code is available at \textcolor[RGB]{228,58,136}{\href{https://github.com/lucaspk512/vrdone}{https://github.com/lucaspk512/vrdone}}. |
|---|---|
| AbstractList | Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights into video scenes beyond basic visual tasks. Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation categories are present and another for determining their temporal boundaries. This split overlooks the inherent connection between these elements. Addressing the need to recognize entity pairs' spatiotemporal interactions across a range of durations, we propose VrdONE, a streamlined yet efficacious one-stage model. VrdONE combines the features of subjects and objects, turning predicate detection into 1D instance segmentation on their combined representations. This setup allows for both relation category identification and binary mask generation in one go, eliminating the need for extra steps like proposal generation or post-processing. VrdONE facilitates the interaction of features across various frames, adeptly capturing both short-lived and enduring relations. Additionally, we introduce the Subject-Object Synergy (SOS) module, enhancing how subjects and objects perceive each other before combining. VrdONE achieves state-of-the-art performances on the VidOR benchmark and ImageNet-VidVRD, showcasing its superior capability in discerning relations across different temporal scales. The code is available at \textcolor[RGB]{228,58,136}{\href{https://github.com/lucaspk512/vrdone}{https://github.com/lucaspk512/vrdone}}. |
| Author | Liu, Bangzhen Jiang, Xinjie Zheng, Chenxi Xu, Xuemiao Zhang, Huaidong Zheng, Weiying He, Shengfeng |
| Author_xml | – sequence: 1 givenname: Xinjie surname: Jiang fullname: Jiang, Xinjie – sequence: 2 givenname: Chenxi surname: Zheng fullname: Zheng, Chenxi – sequence: 3 givenname: Xuemiao surname: Xu fullname: Xu, Xuemiao – sequence: 4 givenname: Bangzhen surname: Liu fullname: Liu, Bangzhen – sequence: 5 givenname: Weiying surname: Zheng fullname: Zheng, Weiying – sequence: 6 givenname: Huaidong surname: Zhang fullname: Zhang, Huaidong – sequence: 7 givenname: Shengfeng surname: He fullname: He, Shengfeng |
| BookMark | eNotj81Kw0AUhQdRsNY-gLuA68Sbe2c6E3dSWxVKA6V0WybJHUkJE80k4uM7opvvnNX5uRGXvvcsxF0OmTRKwYMdvtuvDCWYDIrICzFDojw1EvFaLEI4AwAuNSpFM5Efh6bcrR-T0nMaRvvOybFtuI8Mk-2SPXd2bHufPPPI9a-7FVfOdoEX_zoXh836sHpNt-XL2-ppm1qFmCoy0hHoSktGZw3IAli7RgIb69gwEynN3LCTpnDW4RJqkiR1VdnaNDQX93-xH0P_OXEYT-d-GnxsPFH8VVDcj_QDmUNGsg |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2408.09408 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-5384f307b74e2fa80490e7fd40e8afe8ee3357eedef489faf260c34347bbac8d3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:19:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-5384f307b74e2fa80490e7fd40e8afe8ee3357eedef489faf260c34347bbac8d3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/3094932552?pq-origsite=%requestingapplication% |
| PQID | 3094932552 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_3094932552 |
| PublicationCentury | 2000 |
| PublicationDate | 20240818 |
| PublicationDateYYYYMMDD | 2024-08-18 |
| PublicationDate_xml | – month: 08 year: 2024 text: 20240818 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8804979 |
| SecondaryResourceType | preprint |
| Snippet | Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Instance segmentation Task complexity Visual tasks |
| Title | VrdONE: One-stage Video Visual Relation Detection |
| URI | https://www.proquest.com/docview/3094932552 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9a9uB1-9hkN1kvgtqiB7eLllJPJdlMpCDbutsWf76TuNWD4MVLIIRAkpnM82OGkEvDM9SqXPkMInRQqJG-7CIvZ6hsmNHcgDau2QRPEjEex2kVcCsrWOVaJjpBrWeZjZG3KfohaGuEYXA9f_dt1yibXa1aaGySuq2SEDjo3vN3jCWIOG6gX8lMV7qrLYuP6apl63q1bOU48UsEO73S3_3vifZIPZVzKPbJBuQHZNvhObPykHRHhR4kvStvkIOPBuAreKOphhmO5VK-eWsMnHcHCwfGyo_IsN8b3t77VXcEX4bWgaSCGfygijMIjBQ2gwfcaNYBIQ0IAEpDjhoQDBOxkQYdl4wyyrhSMhOaHpNaPsvhhHgdE4FRMRoy0iDJQgU604pFVKu4y0J2ShrrB5hUHF5Ofm5_9vfyOdkJ0BCwcdiuaJDaoljCBdnKVotpWTRJ_aaXpE9NRzicpQ-P6csnwO2jpw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58oiff-Fi1Bz121zZpkwriwQfKrlVwWfZW0mYiC9LVdn39KP-jk7rVg-DNg5dcCiFMvs7zywzAnhEZWVWRuhxDClCYUa7yCMsZGRtutDCoTTVsQsSx7Pejmwl4r9_CWFplrRMrRa2Hmc2RtxjFIeRrBIF__PDo2qlRtrpaj9D4hEUb314oZCuPLk_pfvd9__yse3LhjqcKuCqwgReT3BCwU8HRN0rayhcKo_kBSmVQIjIWCLIcaLiMjDLk8GeMMy7SVGVSM9p2Eqa5Vf4VU_D2K6Xjh4LOxz5rp1WnsJYqXgfPTdtGrGkb1ckfGr8yY-cL_0wAizB9ox6wWIIJzJdhtmKrZuUKeL1CX8dnh851ji65t3fo9AYah7SWT-reqRl-zimOKqpZvgrdvzjkGkzlwxzXwTkwIZo0IjdNGQJkkKLOdMpDptPI4wHfgEYt72T8_5bJt7A3f_-8C3MX3atO0rmM21sw75PLYzPOnmzA1Kh4wm2YyZ5Hg7LYqbDiQPLHV_MBBOr-Bg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VrdONE%3A+One-stage+Video+Visual+Relation+Detection&rft.jtitle=arXiv.org&rft.au=Jiang%2C+Xinjie&rft.au=Zheng%2C+Chenxi&rft.au=Xu%2C+Xuemiao&rft.au=Liu%2C+Bangzhen&rft.date=2024-08-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2408.09408 |