DeepSign: Deep Learning for Automatic Malware Signature Generation and Classification

This paper presents a novel deep learning based method for automatic malware signature generation and classification. The method uses a deep belief network (DBN), implemented with a deep stack of denoising autoencoders, generating an invariant compact representation of the malware behavior. While co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Eli, David, Netanyahu, Nathan S
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 23.11.2017
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a novel deep learning based method for automatic malware signature generation and classification. The method uses a deep belief network (DBN), implemented with a deep stack of denoising autoencoders, generating an invariant compact representation of the malware behavior. While conventional signature and token based methods for malware detection do not detect a majority of new variants for existing malware, the results presented in this paper show that signatures generated by the DBN allow for an accurate classification of new malware variants. Using a dataset containing hundreds of variants for several major malware families, our method achieves 98.6% classification accuracy using the signatures generated by the DBN. The presented method is completely agnostic to the type of malware behavior that is logged (e.g., API calls and their parameters, registry entries, websites and ports accessed, etc.), and can use any raw input from a sandbox to successfully train the deep neural network which is used to generate malware signatures.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1711.08336