Laplacian Pyramid-like Autoencoder

In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Han, Sangjun, Hur, Taeil, Hur, Youngmi
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 26.08.2022
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the original image in the decoder part using the two components. We use LPAE for experiments on classifications and super-resolution areas. Using the detail image and the smaller-sized approximation image as inputs of a classification network, our LPAE makes the model lighter. Moreover, we show that the performance of the connected classification networks has remained substantially high. In a super-resolution area, we show that the decoder part gets a high-quality reconstruction image by setting to resemble the structure of LP. Consequently, LPAE improves the original results by combining the decoder part of the autoencoder and the super-resolution network.
AbstractList In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the original image in the decoder part using the two components. We use LPAE for experiments on classifications and super-resolution areas. Using the detail image and the smaller-sized approximation image as inputs of a classification network, our LPAE makes the model lighter. Moreover, we show that the performance of the connected classification networks has remained substantially high. In a super-resolution area, we show that the decoder part gets a high-quality reconstruction image by setting to resemble the structure of LP. Consequently, LPAE improves the original results by combining the decoder part of the autoencoder and the super-resolution network.
Author Han, Sangjun
Hur, Youngmi
Hur, Taeil
Author_xml – sequence: 1
  givenname: Sangjun
  surname: Han
  fullname: Han, Sangjun
– sequence: 2
  givenname: Taeil
  surname: Hur
  fullname: Hur, Taeil
– sequence: 3
  givenname: Youngmi
  surname: Hur
  fullname: Hur, Youngmi
BookMark eNotzc1KAzEUQOEgCtbaB3BXdJ3xzs3NJFmWolUY0EX35TY_MHXM1ExH9O0VdHV237kS53nIUYibGiqyWsM9l6_us0IEW9VIls7EDJWqpSXES7EYxwMAYGNQazUTty0fe_Yd5-Xrd-H3Lsi-e4vL1XQaYvZDiOVaXCTux7j471xsHx-26yfZvmye16tWskaUpEM0HrVNLrKm5GFPka2CZAPtEwQNBhBdCGzJeLKNctAkY7xjpwjUXNz9sccyfExxPO0Ow1Ty73GHBoxBUytUP0sUQPw
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2208.12484
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-45de7c258f9ea54fc0b4ea830f8d4bf0d5070229dda847c4863906f77c9a93403
IEDL.DBID M7S
IngestDate Mon Jun 30 09:18:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-45de7c258f9ea54fc0b4ea830f8d4bf0d5070229dda847c4863906f77c9a93403
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2707727132?pq-origsite=%requestingapplication%
PQID 2707727132
PQPubID 2050157
ParticipantIDs proquest_journals_2707727132
PublicationCentury 2000
PublicationDate 20220826
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: 20220826
  day: 26
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8048667
SecondaryResourceType preprint
Snippet In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Approximation
Coders
Image classification
Image quality
Image reconstruction
Mathematical analysis
Signal processing
Title Laplacian Pyramid-like Autoencoder
URI https://www.proquest.com/docview/2707727132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkG5-liNe0aTa72ZxEpUWhlkWL1FOZ5gGL2tbdtui_N1m3Ch68eAy5JEwy82XmyzcA5zZUIQ0EI1y2kHAtKUEZUsKt1yIRowgLtsVjV_R68WAgkzLhlpe0yqVPLBy1niifI28yQR0QdE8qdjF9I75rlK-uli00VqHqVRJaBXXv4TvHwiLhEHPwVcwspLuamL2niwZjNG64yOY1TX-54CKudDb_u6ItqCY4Ndk2rJjxDqwXfE6V78JZFz3bytm-nnxk-Jpq8pI-m_rlfDbx0pXaZHvQ77T71zekbIdA0IEkwkNthGJhbKXBkFtFR9xgHFAbaz6yVDtk5wKy1BpdxFE8dtiDRlYIJVEGnAb7UBlPxuYA6jxULR1ZxY1FbiVDKXCkrHs7oWCWiUM4We54WB7pfPiz3aO_p49hg_k_AtRdwegEKrNsbk5hTS1maZ7VoHrV7iX3tcJSbpTc3iVPn9TKnMg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5QN0aPhdLtbrcHY4xKICAhkRhupPSREBVweSg_yv9ou7CaePDGwXOTpplOv_mm_ToDcGECGWCfEUR5SSCqOEaCBxhR42qRsG4oErXFU501GlG7zZsZ-Ez_wjhZZYqJCVCrgXR35EXCsCWCNqUi18M35LpGudfVtIXG3C1qevZuU7bRVfXO7u8lIeX71m0FLboKIGG5BqKB0kySIDJci4AaibtUi8jHJlK0a7CyBMnGNa6UsMAtaWRDOA4NY5IL7lPs22lXIGdZBOGJUvDx-0qHhMwSdH_-dppUCiuK-KM3LRCCo4INpK6E6i_ET8JYefOfGWALck0x1PE2ZHR_B9YStaoc7cJ5XTgtmfVsrzmLxWtPoZfes_ZuJuOBK8ypdLwHrWWsah-y_UFfH4BHA1lSoZFUG0ENJ4Iz0ZXGZoaCEUPYIeRTA3cWB3bU-bHu0d_DZ7BeaT3UO_Vqo3YMG8T9hsAWbMI8ZMfxRJ_AqpyOe6P4NHEODzpL3osvEI_0Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laplacian+Pyramid-like+Autoencoder&rft.jtitle=arXiv.org&rft.au=Han%2C+Sangjun&rft.au=Hur%2C+Taeil&rft.au=Hur%2C+Youngmi&rft.date=2022-08-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2208.12484