Laplacian Pyramid-like Autoencoder
In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the or...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
26.08.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the original image in the decoder part using the two components. We use LPAE for experiments on classifications and super-resolution areas. Using the detail image and the smaller-sized approximation image as inputs of a classification network, our LPAE makes the model lighter. Moreover, we show that the performance of the connected classification networks has remained substantially high. In a super-resolution area, we show that the decoder part gets a high-quality reconstruction image by setting to resemble the structure of LP. Consequently, LPAE improves the original results by combining the decoder part of the autoencoder and the super-resolution network. |
|---|---|
| AbstractList | In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the original image in the decoder part using the two components. We use LPAE for experiments on classifications and super-resolution areas. Using the detail image and the smaller-sized approximation image as inputs of a classification network, our LPAE makes the model lighter. Moreover, we show that the performance of the connected classification networks has remained substantially high. In a super-resolution area, we show that the decoder part gets a high-quality reconstruction image by setting to resemble the structure of LP. Consequently, LPAE improves the original results by combining the decoder part of the autoencoder and the super-resolution network. |
| Author | Han, Sangjun Hur, Youngmi Hur, Taeil |
| Author_xml | – sequence: 1 givenname: Sangjun surname: Han fullname: Han, Sangjun – sequence: 2 givenname: Taeil surname: Hur fullname: Hur, Taeil – sequence: 3 givenname: Youngmi surname: Hur fullname: Hur, Youngmi |
| BookMark | eNotzc1KAzEUQOEgCtbaB3BXdJ3xzs3NJFmWolUY0EX35TY_MHXM1ExH9O0VdHV237kS53nIUYibGiqyWsM9l6_us0IEW9VIls7EDJWqpSXES7EYxwMAYGNQazUTty0fe_Yd5-Xrd-H3Lsi-e4vL1XQaYvZDiOVaXCTux7j471xsHx-26yfZvmye16tWskaUpEM0HrVNLrKm5GFPka2CZAPtEwQNBhBdCGzJeLKNctAkY7xjpwjUXNz9sccyfExxPO0Ow1Ty73GHBoxBUytUP0sUQPw |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2208.12484 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database (subscription) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-45de7c258f9ea54fc0b4ea830f8d4bf0d5070229dda847c4863906f77c9a93403 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:18:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-45de7c258f9ea54fc0b4ea830f8d4bf0d5070229dda847c4863906f77c9a93403 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2707727132?pq-origsite=%requestingapplication% |
| PQID | 2707727132 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2707727132 |
| PublicationCentury | 2000 |
| PublicationDate | 20220826 |
| PublicationDateYYYYMMDD | 2022-08-26 |
| PublicationDate_xml | – month: 08 year: 2022 text: 20220826 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8048667 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Approximation Coders Image classification Image quality Image reconstruction Mathematical analysis Signal processing |
| Title | Laplacian Pyramid-like Autoencoder |
| URI | https://www.proquest.com/docview/2707727132 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkG5-liNe0aTa72ZxEpUWhlkWL1FOZ5gGL2tbdtui_N1m3Ch68eAy5JEwy82XmyzcA5zZUIQ0EI1y2kHAtKUEZUsKt1yIRowgLtsVjV_R68WAgkzLhlpe0yqVPLBy1niifI28yQR0QdE8qdjF9I75rlK-uli00VqHqVRJaBXXv4TvHwiLhEHPwVcwspLuamL2niwZjNG64yOY1TX-54CKudDb_u6ItqCY4Ndk2rJjxDqwXfE6V78JZFz3bytm-nnxk-Jpq8pI-m_rlfDbx0pXaZHvQ77T71zekbIdA0IEkwkNthGJhbKXBkFtFR9xgHFAbaz6yVDtk5wKy1BpdxFE8dtiDRlYIJVEGnAb7UBlPxuYA6jxULR1ZxY1FbiVDKXCkrHs7oWCWiUM4We54WB7pfPiz3aO_p49hg_k_AtRdwegEKrNsbk5hTS1maZ7VoHrV7iX3tcJSbpTc3iVPn9TKnMg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gaPTkOz5QN0aPhdLtbrcHY4xKICAhkRhupPSREBVweSg_yv9ou7CaePDGwXOTpplOv_mm_ToDcGECGWCfEUR5SSCqOEaCBxhR42qRsG4oErXFU501GlG7zZsZ-Ez_wjhZZYqJCVCrgXR35EXCsCWCNqUi18M35LpGudfVtIXG3C1qevZuU7bRVfXO7u8lIeX71m0FLboKIGG5BqKB0kySIDJci4AaibtUi8jHJlK0a7CyBMnGNa6UsMAtaWRDOA4NY5IL7lPs22lXIGdZBOGJUvDx-0qHhMwSdH_-dppUCiuK-KM3LRCCo4INpK6E6i_ET8JYefOfGWALck0x1PE2ZHR_B9YStaoc7cJ5XTgtmfVsrzmLxWtPoZfes_ZuJuOBK8ypdLwHrWWsah-y_UFfH4BHA1lSoZFUG0ENJ4Iz0ZXGZoaCEUPYIeRTA3cWB3bU-bHu0d_DZ7BeaT3UO_Vqo3YMG8T9hsAWbMI8ZMfxRJ_AqpyOe6P4NHEODzpL3osvEI_0Wg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laplacian+Pyramid-like+Autoencoder&rft.jtitle=arXiv.org&rft.au=Han%2C+Sangjun&rft.au=Hur%2C+Taeil&rft.au=Hur%2C+Youngmi&rft.date=2022-08-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2208.12484 |