Online Revenue Maximization for Server Pricing

Efficient and truthful mechanisms to price resources on remote servers/machines has been the subject of much work in recent years due to the importance of the cloud market. This paper considers revenue maximization in the online stochastic setting with non-preemptive jobs and a unit capacity server....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Boodaghians, Shant, Fusco, Federico, Leonardi, Stefano, Mansour, Yishay, Mehta, Ruta
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 01.10.2019
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Efficient and truthful mechanisms to price resources on remote servers/machines has been the subject of much work in recent years due to the importance of the cloud market. This paper considers revenue maximization in the online stochastic setting with non-preemptive jobs and a unit capacity server. One agent/job arrives at every time step, with parameters drawn from an underlying unknown distribution. We design a posted-price mechanism which can be efficiently computed, and is revenue-optimal in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent's type, and the computed pricing scheme is deterministic, depending only on the length of the allotted time interval and on the earliest time the server is available. If the distribution of agent's type is only learned from observing the jobs that are executed, we prove that a polynomial number of samples is sufficient to obtain a near-optimal truthful pricing strategy.
AbstractList Efficient and truthful mechanisms to price resources on remote servers/machines has been the subject of much work in recent years due to the importance of the cloud market. This paper considers revenue maximization in the online stochastic setting with non-preemptive jobs and a unit capacity server. One agent/job arrives at every time step, with parameters drawn from an underlying unknown distribution. We design a posted-price mechanism which can be efficiently computed, and is revenue-optimal in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent's type, and the computed pricing scheme is deterministic, depending only on the length of the allotted time interval and on the earliest time the server is available. If the distribution of agent's type is only learned from observing the jobs that are executed, we prove that a polynomial number of samples is sufficient to obtain a near-optimal truthful pricing strategy.
Author Leonardi, Stefano
Mansour, Yishay
Boodaghians, Shant
Fusco, Federico
Mehta, Ruta
Author_xml – sequence: 1
  givenname: Shant
  surname: Boodaghians
  fullname: Boodaghians, Shant
– sequence: 2
  givenname: Federico
  surname: Fusco
  fullname: Fusco, Federico
– sequence: 3
  givenname: Stefano
  surname: Leonardi
  fullname: Leonardi, Stefano
– sequence: 4
  givenname: Yishay
  surname: Mansour
  fullname: Mansour, Yishay
– sequence: 5
  givenname: Ruta
  surname: Mehta
  fullname: Mehta, Ruta
BookMark eNotjlFLwzAURoMoOOd-gG8Fn1tvb27a5FGGOmEy2fY-svRGMmaq6VqGv96CPp2nc77vRlzGNrIQdyUUpJWCB5vOYShKA1UBRmu4EBOUssw1IV6LWdcdAACrGpWSE1Gs4jFEztY8cOw5e7Pn8Bl-7Cm0MfNtyjacBk7ZewouxI9bceXtsePZP6di-_y0nS_y5erldf64zK1CzKVWJdUNkjNeYkNl45jAQ-MIdGW1pb2V7NggVkrux6_K1Y0mkOSN10ZOxf1f9iu13z13p92h7VMcF3eINDqjifIXCPpFTw
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1906.09880
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-385147d24c9f32d41dce40f0dc4086a8a4ba3ece922653b1905c7d84034f9f893
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:29:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-385147d24c9f32d41dce40f0dc4086a8a4ba3ece922653b1905c7d84034f9f893
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2246539222?pq-origsite=%requestingapplication%
PQID 2246539222
PQPubID 2050157
ParticipantIDs proquest_journals_2246539222
PublicationCentury 2000
PublicationDate 20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191001
  day: 01
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7012328
SecondaryResourceType preprint
Snippet Efficient and truthful mechanisms to price resources on remote servers/machines has been the subject of much work in recent years due to the importance of the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Computation
Maximization
Optimization
Polynomials
Preempting
Pricing
Revenue
Servers
Title Online Revenue Maximization for Server Pricing
URI https://www.proquest.com/docview/2246539222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oaOLJ7_iBpAevhbK77e6eTDQQTYQ0yAFPZL-acBCwBcLPd7YUPZh48dj0MpNu3ryZfX0DcK9jElHubKiJYSEeChWKTiRD6SxxTkmts9Iy_5UPBmI8lmk1cCsqWeUOE0ugtnPjZ-Rtb3wWYzEn5GHxGfqtUf52tVqhsQ9171TGalB_7A7S4feUhSQcOTPdXmeW5l1tlW-m6xbWwaQVSSGiXyBcVpbe8X9jOoF6qhYuP4U9NzuDw1LRaYpzaG1NRIOht2hauaCvNtOP6qfLAJlq4FHC5YHf-47l6wJGve7o6TmsliOEKvYCfGRKjFvCjMwosaxjjWNRFlnDsElRQjGtqDMOg8MQNaYbG26xm6MskxmSlEuozeYzdwWBlgKhJtFGOs04pTpm3Pg2K06EpZG4hsYu-0l1wIvJT-o3f7--hSPkGHKrf2tAbZmv3B0cmPVyWuTN6ns1veTyDZ_Sl376_gVtxqGE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwELaqFgQTb_EokAHGtKntJPaAGICqVR-qUIcyRX5F6kBbkraUH8V_5JykMCCxdWCOFMfny3ff2efvELqRPvZIaLQrsaIuOIVwWcPjLjcaGyO4lHEmmd8N-302GvFBCX2u78LYsso1JmZArafK7pHXrfCZD8Ec4_vZm2u7RtnT1XULjdwtOubjHVK29K79COt7i3HzafjQcouuAq7wbeU6UAwaakwVjwnWtKGVoV7saUWB3QsmqBTEKAMjwXgS4qWvQg1pEKExj5nVXgLEr1CYFiujyqDdG7x8b-rgIASKTvLT00wrrC6S1XhZg9cENY8z5v3C_CyQNff-mQn2YepiZpIDVDKTQ7Sd1auq9AjVcolU59kKUC2M0xOr8WtxpdQBHu5YDDSJY7vaQ3A-RsNNfOEJKk-mE3OKHMkZAGkgFTeShoRIn4bKJpF-wDTx2Bmqro0dFb9vGv1Y-vzvx9dopzXsdaNuu9-5QLvApnhe6VdF5XmyMJdoSy3n4zS5KlzFQdGGV-YLrKT5Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Revenue+Maximization+for+Server+Pricing&rft.jtitle=arXiv.org&rft.au=Boodaghians%2C+Shant&rft.au=Fusco%2C+Federico&rft.au=Leonardi%2C+Stefano&rft.au=Mansour%2C+Yishay&rft.date=2019-10-01&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1906.09880