Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement

The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of \(p\) layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initial...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Sack, Stefan H, Medina, Raimel A, Kueng, Richard, Serbyn, Maksym
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 06.06.2023
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of \(p\) layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initialization, the optimization typically leads to local minima with poor performance, motivating the search for initialization strategies of QAOA variational parameters. Although numerous heuristic initializations exist, an analytical understanding and performance guarantees for large \(p\) remain evasive. We introduce a greedy initialization of QAOA which guarantees improving performance with an increasing number of layers. Our main result is an analytic construction of \(2p+1\) transition states - saddle points with a unique negative curvature direction - for QAOA with \(p+1\) layers that use the local minimum of QAOA with \(p\) layers. Transition states connect to new local minima, which are guaranteed to lower the energy compared to the minimum found for \(p\) layers. We use the GREEDY procedure to navigate the exponentially increasing with \(p\) number of local minima resulting from the recursive application of our analytic construction. The performance of the GREEDY procedure matches available initialization strategies while providing a guarantee for the minimal energy to decrease with an increasing number of layers \(p\).
AbstractList The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of \(p\) layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initialization, the optimization typically leads to local minima with poor performance, motivating the search for initialization strategies of QAOA variational parameters. Although numerous heuristic initializations exist, an analytical understanding and performance guarantees for large \(p\) remain evasive. We introduce a greedy initialization of QAOA which guarantees improving performance with an increasing number of layers. Our main result is an analytic construction of \(2p+1\) transition states - saddle points with a unique negative curvature direction - for QAOA with \(p+1\) layers that use the local minimum of QAOA with \(p\) layers. Transition states connect to new local minima, which are guaranteed to lower the energy compared to the minimum found for \(p\) layers. We use the GREEDY procedure to navigate the exponentially increasing with \(p\) number of local minima resulting from the recursive application of our analytic construction. The performance of the GREEDY procedure matches available initialization strategies while providing a guarantee for the minimal energy to decrease with an increasing number of layers \(p\).
Author Serbyn, Maksym
Medina, Raimel A
Kueng, Richard
Sack, Stefan H
Author_xml – sequence: 1
  givenname: Stefan
  surname: Sack
  middlename: H
  fullname: Sack, Stefan H
– sequence: 2
  givenname: Raimel
  surname: Medina
  middlename: A
  fullname: Medina, Raimel A
– sequence: 3
  givenname: Richard
  surname: Kueng
  fullname: Kueng, Richard
– sequence: 4
  givenname: Maksym
  surname: Serbyn
  fullname: Serbyn, Maksym
BookMark eNo1jV9LwzAUxYMoOOc-gG8Bnztvb5omfZThPxgIsvdx26ZbxppsaTqnn96A-nIOHM7vnBt26bwzjN3lMC-0lPBA4WxPc0So5pDnsrpgExQiz3SBeM1mw7ADACwVSikmrP8wzRgGezJ8E4xpv7h1Nlra22-K1jvuOx63hh9HcnHsOR0OwZ9tT9Fwf4i2_-_RfuODjduefyblm5FCItIit31CTqY3Lt6yq472g5n9-ZStnp9Wi9ds-f7ytnhcZiQRM4RCttSoslUSVUca6krlsk1BQwi6a0xNTV0JAFUKUWitE6JJdaZopOzElN3_zqbj42iGuN75Mbj0uEYFlYYSJYofH2FfIQ
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2209.01159
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-2045dac76d7527fa80b9715d76dca208fcebacb9300763348882048a7fe4c55f3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:32:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-2045dac76d7527fa80b9715d76dca208fcebacb9300763348882048a7fe4c55f3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2709806252?pq-origsite=%requestingapplication%
PQID 2709806252
PQPubID 2050157
ParticipantIDs proquest_journals_2709806252
PublicationCentury 2000
PublicationDate 20230606
PublicationDateYYYYMMDD 2023-06-06
PublicationDate_xml – month: 06
  year: 2023
  text: 20230606
  day: 06
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8340642
SecondaryResourceType preprint
Snippet The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Minima
Optimization
Optimization algorithms
Parameters
Quantum computers
Saddle points
Title Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement
URI https://www.proquest.com/docview/2709806252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UNPHk7_gDSQ9eJ6Nb1_ZkooFoomRBYvBEurbTJcBgA8Kf72sdejDx4nFbly2vfW_fvvf1PYSuBY_8INTgaTQSXhiYFFyKck8LEkm4yRdORPP6xHo9PhyKuCLcykpWuYmJLlDrXFmOvEWYL7gPaJ3czuae7Rpls6tVC41tVLeVymCd1-86vbj_zbKQiAFmDr7Sma54V0sW62x1Q4gtVAlwSPwKwu7L0t3_7zsdoHosZ6Y4RFtmeoR2naJTlcdo0rdMuhWnY_ilhliKM6sTkuNq4yXOUwzgD8-XYNvlBLvi4usMAKzBOcSRyWacHL_DMxcfE2w5W_wOa8rOhtE4c4SE4xdP0KDbGdw_eFVvBU8C4vJsEXotFYs0o4SlkvuJYG2q4YSSxOepMolUiQhsps5u1gUgDr4uWWpCRWkanKLaNJ-aM4TDIBGakUBFJgxTybhsq4hTohWn2mh1jhob440q_yhHP5a7-PvyJdqzDd6dOCtqoNqiWJortKNWi6wsmtV0N61i8wWO4sfn-O0Tbz-7gw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BAionykuFpmUP7dHgrL2vQ4UEBYEIUYQixC3a7K6DpTydB_Cj-h87u4npoVJvHHq1vZbW89jPM9_MAHxTksdJatHSGFdRmrgMTYrJyCrKNS6KVSDRPDREsykfH1VrDX6VtTCeVln6xOCo7cj4GPkpFbGSMaJ1ejaeRH5qlM-uliM0lmpx616f8Zdt-uPmJ8r3O6VXl-2L62g1VSDSiDUi337daiO4FYyKTMu4q0SdWbxgNI1lZlxXm65KfI7Kl6kiBEUt1yJzqWEsS_C161BNk5SzClTPL5ut-7egDuUCIXqyzJ6GXmGnunjJFyeU-r6YiL7UXz4_HGRX2__ZJ_gI1ZYeu2IH1txwFzYDX9VM92Bw7_MEnnpPegUewK8k9ywo3V-VlZJRRhDakskcNWc-IKF1-kuO8NyREXrJQfmc7vdwi7OnAfERadJDi_G65izJQ7glRE_3of0eGzyAynA0dJ-ApElXWUETw12aZlpIXTdcMmqNZNZZcwi1UladlfVPO38EdfTv28fw4bp91-g0bpq3n2HLj7IPNDReg8qsmLsvsGEWs3xafF1pGoHOOwv2N6VpE54
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+greedy+initialization+of+the+quantum+approximate+optimization+algorithm+with+guaranteed+improvement&rft.jtitle=arXiv.org&rft.au=Sack%2C+Stefan+H&rft.au=Medina%2C+Raimel+A&rft.au=Kueng%2C+Richard&rft.au=Serbyn%2C+Maksym&rft.date=2023-06-06&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2209.01159