Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement
The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of \(p\) layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initial...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , , , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
06.06.2023
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of \(p\) layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initialization, the optimization typically leads to local minima with poor performance, motivating the search for initialization strategies of QAOA variational parameters. Although numerous heuristic initializations exist, an analytical understanding and performance guarantees for large \(p\) remain evasive. We introduce a greedy initialization of QAOA which guarantees improving performance with an increasing number of layers. Our main result is an analytic construction of \(2p+1\) transition states - saddle points with a unique negative curvature direction - for QAOA with \(p+1\) layers that use the local minimum of QAOA with \(p\) layers. Transition states connect to new local minima, which are guaranteed to lower the energy compared to the minimum found for \(p\) layers. We use the GREEDY procedure to navigate the exponentially increasing with \(p\) number of local minima resulting from the recursive application of our analytic construction. The performance of the GREEDY procedure matches available initialization strategies while providing a guarantee for the minimal energy to decrease with an increasing number of layers \(p\). |
|---|---|
| AbstractList | The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting of \(p\) layers of alternating unitary operators and a classical computer is used to optimize the variational parameters. For a random initialization, the optimization typically leads to local minima with poor performance, motivating the search for initialization strategies of QAOA variational parameters. Although numerous heuristic initializations exist, an analytical understanding and performance guarantees for large \(p\) remain evasive. We introduce a greedy initialization of QAOA which guarantees improving performance with an increasing number of layers. Our main result is an analytic construction of \(2p+1\) transition states - saddle points with a unique negative curvature direction - for QAOA with \(p+1\) layers that use the local minimum of QAOA with \(p\) layers. Transition states connect to new local minima, which are guaranteed to lower the energy compared to the minimum found for \(p\) layers. We use the GREEDY procedure to navigate the exponentially increasing with \(p\) number of local minima resulting from the recursive application of our analytic construction. The performance of the GREEDY procedure matches available initialization strategies while providing a guarantee for the minimal energy to decrease with an increasing number of layers \(p\). |
| Author | Serbyn, Maksym Medina, Raimel A Kueng, Richard Sack, Stefan H |
| Author_xml | – sequence: 1 givenname: Stefan surname: Sack middlename: H fullname: Sack, Stefan H – sequence: 2 givenname: Raimel surname: Medina middlename: A fullname: Medina, Raimel A – sequence: 3 givenname: Richard surname: Kueng fullname: Kueng, Richard – sequence: 4 givenname: Maksym surname: Serbyn fullname: Serbyn, Maksym |
| BookMark | eNo1jV9LwzAUxYMoOOc-gG8Bnztvb5omfZThPxgIsvdx26ZbxppsaTqnn96A-nIOHM7vnBt26bwzjN3lMC-0lPBA4WxPc0So5pDnsrpgExQiz3SBeM1mw7ADACwVSikmrP8wzRgGezJ8E4xpv7h1Nlra22-K1jvuOx63hh9HcnHsOR0OwZ9tT9Fwf4i2_-_RfuODjduefyblm5FCItIit31CTqY3Lt6yq472g5n9-ZStnp9Wi9ds-f7ytnhcZiQRM4RCttSoslUSVUca6krlsk1BQwi6a0xNTV0JAFUKUWitE6JJdaZopOzElN3_zqbj42iGuN75Mbj0uEYFlYYSJYofH2FfIQ |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2209.01159 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-2045dac76d7527fa80b9715d76dca208fcebacb9300763348882048a7fe4c55f3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:32:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-2045dac76d7527fa80b9715d76dca208fcebacb9300763348882048a7fe4c55f3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2709806252?pq-origsite=%requestingapplication% |
| PQID | 2709806252 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2709806252 |
| PublicationCentury | 2000 |
| PublicationDate | 20230606 |
| PublicationDateYYYYMMDD | 2023-06-06 |
| PublicationDate_xml | – month: 06 year: 2023 text: 20230606 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8340642 |
| SecondaryResourceType | preprint |
| Snippet | The quantum approximate optimization algorithm (QAOA) is a variational quantum algorithm, where a quantum computer implements a variational ansatz consisting... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Minima Optimization Optimization algorithms Parameters Quantum computers Saddle points |
| Title | Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement |
| URI | https://www.proquest.com/docview/2709806252 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UNPHk7_gDSQ9eJ6Nb1_ZkooFoomRBYvBEurbTJcBgA8Kf72sdejDx4nFbly2vfW_fvvf1PYSuBY_8INTgaTQSXhiYFFyKck8LEkm4yRdORPP6xHo9PhyKuCLcykpWuYmJLlDrXFmOvEWYL7gPaJ3czuae7Rpls6tVC41tVLeVymCd1-86vbj_zbKQiAFmDr7Sma54V0sW62x1Q4gtVAlwSPwKwu7L0t3_7zsdoHosZ6Y4RFtmeoR2naJTlcdo0rdMuhWnY_ilhliKM6sTkuNq4yXOUwzgD8-XYNvlBLvi4usMAKzBOcSRyWacHL_DMxcfE2w5W_wOa8rOhtE4c4SE4xdP0KDbGdw_eFVvBU8C4vJsEXotFYs0o4SlkvuJYG2q4YSSxOepMolUiQhsps5u1gUgDr4uWWpCRWkanKLaNJ-aM4TDIBGakUBFJgxTybhsq4hTohWn2mh1jhob440q_yhHP5a7-PvyJdqzDd6dOCtqoNqiWJortKNWi6wsmtV0N61i8wWO4sfn-O0Tbz-7gw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BAionykuFpmUP7dHgrL2vQ4UEBYEIUYQixC3a7K6DpTydB_Cj-h87u4npoVJvHHq1vZbW89jPM9_MAHxTksdJatHSGFdRmrgMTYrJyCrKNS6KVSDRPDREsykfH1VrDX6VtTCeVln6xOCo7cj4GPkpFbGSMaJ1ejaeRH5qlM-uliM0lmpx616f8Zdt-uPmJ8r3O6VXl-2L62g1VSDSiDUi337daiO4FYyKTMu4q0SdWbxgNI1lZlxXm65KfI7Kl6kiBEUt1yJzqWEsS_C161BNk5SzClTPL5ut-7egDuUCIXqyzJ6GXmGnunjJFyeU-r6YiL7UXz4_HGRX2__ZJ_gI1ZYeu2IH1txwFzYDX9VM92Bw7_MEnnpPegUewK8k9ywo3V-VlZJRRhDakskcNWc-IKF1-kuO8NyREXrJQfmc7vdwi7OnAfERadJDi_G65izJQ7glRE_3of0eGzyAynA0dJ-ApElXWUETw12aZlpIXTdcMmqNZNZZcwi1UladlfVPO38EdfTv28fw4bp91-g0bpq3n2HLj7IPNDReg8qsmLsvsGEWs3xafF1pGoHOOwv2N6VpE54 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+greedy+initialization+of+the+quantum+approximate+optimization+algorithm+with+guaranteed+improvement&rft.jtitle=arXiv.org&rft.au=Sack%2C+Stefan+H&rft.au=Medina%2C+Raimel+A&rft.au=Kueng%2C+Richard&rft.au=Serbyn%2C+Maksym&rft.date=2023-06-06&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2209.01159 |