Truncated Wigner approximation as a non-positive Kraus map

We show that the Truncated Wigner Approximation developed in the flat phase-space is mapped into a Lindblad-type evolution with an indefinite metric in the space of linear operators. As a result, the classically evolved Wigner function corresponds to a non-positive operator \(\hat{R}(t)\), which doe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Klimov, A B, Sainz, I, Romero, J L
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 09.08.2021
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that the Truncated Wigner Approximation developed in the flat phase-space is mapped into a Lindblad-type evolution with an indefinite metric in the space of linear operators. As a result, the classically evolved Wigner function corresponds to a non-positive operator \(\hat{R}(t)\), which does not describe a physical state. The rate of appearance of negative eigenvalues of \(\hat{R}(t)\) can be efficiently estimated. The short-time dynamics of the Kerr and second harmonic generation Hamiltonains are discussed.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2108.04189