A singular series average and the zeros of the Riemann zeta-function
We show that the Riesz mean of the singular series in the Goldbach and the Hardy-Littlewood prime-pair conjectures has an asymptotic formula with an error term that can be expressed as an explicit formula that depends on the zeros of the Riemann zeta-function. Unconditionally this error term can be...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
31.07.2020
|
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We show that the Riesz mean of the singular series in the Goldbach and the Hardy-Littlewood prime-pair conjectures has an asymptotic formula with an error term that can be expressed as an explicit formula that depends on the zeros of the Riemann zeta-function. Unconditionally this error term can be shown to oscillate, while conditionally it can be shown to oscillate between sharp bounds. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2007.16099 |