Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory
Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading inte...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
19.03.2022
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from -5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals. |
|---|---|
| AbstractList | Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from -5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals. |
| Author | Tropschug, Carsten Pachnicke, Stephan Griesser, Helmut Abdelli, Khouloud |
| Author_xml | – sequence: 1 givenname: Khouloud surname: Abdelli fullname: Abdelli, Khouloud – sequence: 2 givenname: Helmut surname: Griesser fullname: Griesser, Helmut – sequence: 3 givenname: Carsten surname: Tropschug fullname: Tropschug, Carsten – sequence: 4 givenname: Stephan surname: Pachnicke fullname: Pachnicke, Stephan |
| BookMark | eNotkM1OwzAQhC0EEqX0AbhZ4pyy8U_iHPtDASlQCXKv3GQDrlK7OElFeRSeFpdyWmk-zcxqrsi5dRYJuYlhLJSUcKf9l9mPGQM-jlkC4owMGOdxpARjl2TUthsAYEnKpOQD8rPcdabUDV2YNXq60H3T0Tl2WHbGWaptRXMXuPnWf4IJGn1xpj3QZTF_pYXXJdKpbrGiAc_RBmbsO505u3dNfzSF9EnfObSlq0LHMXNqKuNPHYHmLhjePpzvogL9lj7j1vnDNbmoddPi6P8OSbG4L2aPUb58eJpN8khLxqJYoxBKQ4kizmKdKl0BhwwkS6VQkK1hLWuR6hpSzjVgkgnFFYoaMylAAx-S21PszrvPHttutXG9D2-1K5aIsCBTGeO_SXRrkA |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2203.12604 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a522-1ae448a0ce4191a78ad0309052754809b0b5f47af0733a0e694838e4fe9540a03 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:21:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a522-1ae448a0ce4191a78ad0309052754809b0b5f47af0733a0e694838e4fe9540a03 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2642602892?pq-origsite=%requestingapplication% |
| PQID | 2642602892 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2642602892 |
| PublicationCentury | 2000 |
| PublicationDate | 20220319 |
| PublicationDateYYYYMMDD | 2022-03-19 |
| PublicationDate_xml | – month: 03 year: 2022 text: 20220319 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.788769 |
| SecondaryResourceType | preprint |
| Snippet | Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Backscattering Blurring Fault detection Fault location Fiber optics Localization Noise reduction Optical fibers Optical memory (data storage) Short term |
| Title | Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory |
| URI | https://www.proquest.com/docview/2642602892 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgBYkTu1hK5QNXt4nj1skJ0SUCqUvURqicKidxRCSUlCat6K_wtYzdAAckLhyTUZzIcua9GT_PIHRrcSPmNgsIZ0wQFlkOCYCXEIsJk0U0bNlaRPM04KORPZs5Xplwy0tZ5ZdP1I46ykKVI28CcAP1hvCA3i3eiOoapXZXyxYau6iqqiSYWro3_c6x0DYHxmxtNzN16a6mWL4n6walhtUwYTz2ywVrXHEP__tFR6jqiYVcHqMdmZ6gfa3nDPNT9DFe6CQ1dpUiBLti9Vrgniy08CrFIo3wQKFYeQoTJ3APj7Ik3-Cx35tggLBQ4g5AXITB3JMp2ADlcDdL1-VqhdHvV0WmKmFG8A41ZifZQuTWOsjggekLEHziAwDgoVL1bs6Q7_b97gMp2zAQAeSMmEJCCCeMUDKI7QS3RaS2ZYwW5apWnBMYQStmXMSq_aMwZNthtmVLFksH2KAwrHNUSbNUXiAsgP60YyewpUqixNzh1IhZywzaPAImKC9R7Wum5-WvlM9_pvnqb_M1OqDqbIIS2zk1VCmWK3mD9sJ1keTLOqp2-iNvUtcrBK68x6H3_Amsn8ZC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BAcGJXez4AEdD6rh1fEAIKBWIUBBEiFvlJI6IhJLSpIX-Cv_APzJ2WzggcePANaM4kZd5b8bPHoA9VziJ8HhIBeeK8tiVNEReQl2uqjxmUc2zIpoHX7Ra3uOjvJ2Aj_FZGCOrHPtE66jjPDI58kMEbqTeGB6w484LNVWjzO7quITGcFpc6cErhmzF0WUDx3efseZ5cHZBR1UFqEKuQatKY0SinEhzDFWU8FRsdhmcGhPm6jMZOmEt4UIlppqhcnRdcs_1NE-0RHKjHBebnYQpZBFMWqXg_VdKh9UFEnR3uHdqbwo7VN23tH_AmOMeVPH3-Q-Pb2GsOf_POmABpm5VR3cXYUJnSzBj1apRsQzvNx2bgidNo3chTdV7LklDl1ZWlhGVxcQ3GD06Y0pSfEZaeVoMyE3QuCMI0JEmpwjgMUFzQ2doQwwnZ3nWH61FbP2kV-bmns8Yv2HaPE2HBGBo9XN84f4JwxcaILyRa6NZHqxA8Be9sQqVLM_0GhCF5K6eyNDTJkWUCCmYk_BaNayLGHmuXoet8cC2R46iaH-P6sbv5l2YvQiu_bZ_2brahDlmTmEYWaHcgkrZ7eltmI76ZVp0d-ykJND-4znwCY9tG0Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Fiber+Fault+Detection+and+Localization+in+a+Noisy+OTDR+Trace+Based+on+Denoising+Convolutional+Autoencoder+and+Bidirectional+Long+Short-Term+Memory&rft.jtitle=arXiv.org&rft.au=Abdelli%2C+Khouloud&rft.au=Griesser%2C+Helmut&rft.au=Tropschug%2C+Carsten&rft.au=Pachnicke%2C+Stephan&rft.date=2022-03-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2203.12604 |