Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory

Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Abdelli, Khouloud, Griesser, Helmut, Tropschug, Carsten, Pachnicke, Stephan
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.03.2022
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from -5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals.
AbstractList Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from -5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals.
Author Tropschug, Carsten
Pachnicke, Stephan
Griesser, Helmut
Abdelli, Khouloud
Author_xml – sequence: 1
  givenname: Khouloud
  surname: Abdelli
  fullname: Abdelli, Khouloud
– sequence: 2
  givenname: Helmut
  surname: Griesser
  fullname: Griesser, Helmut
– sequence: 3
  givenname: Carsten
  surname: Tropschug
  fullname: Tropschug, Carsten
– sequence: 4
  givenname: Stephan
  surname: Pachnicke
  fullname: Pachnicke, Stephan
BookMark eNotkM1OwzAQhC0EEqX0AbhZ4pyy8U_iHPtDASlQCXKv3GQDrlK7OElFeRSeFpdyWmk-zcxqrsi5dRYJuYlhLJSUcKf9l9mPGQM-jlkC4owMGOdxpARjl2TUthsAYEnKpOQD8rPcdabUDV2YNXq60H3T0Tl2WHbGWaptRXMXuPnWf4IJGn1xpj3QZTF_pYXXJdKpbrGiAc_RBmbsO505u3dNfzSF9EnfObSlq0LHMXNqKuNPHYHmLhjePpzvogL9lj7j1vnDNbmoddPi6P8OSbG4L2aPUb58eJpN8khLxqJYoxBKQ4kizmKdKl0BhwwkS6VQkK1hLWuR6hpSzjVgkgnFFYoaMylAAx-S21PszrvPHttutXG9D2-1K5aIsCBTGeO_SXRrkA
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2203.12604
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a522-1ae448a0ce4191a78ad0309052754809b0b5f47af0733a0e694838e4fe9540a03
IEDL.DBID M7S
IngestDate Mon Jun 30 09:21:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-1ae448a0ce4191a78ad0309052754809b0b5f47af0733a0e694838e4fe9540a03
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2642602892?pq-origsite=%requestingapplication%
PQID 2642602892
PQPubID 2050157
ParticipantIDs proquest_journals_2642602892
PublicationCentury 2000
PublicationDate 20220319
PublicationDateYYYYMMDD 2022-03-19
PublicationDate_xml – month: 03
  year: 2022
  text: 20220319
  day: 19
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.788769
SecondaryResourceType preprint
Snippet Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Backscattering
Blurring
Fault detection
Fault location
Fiber optics
Localization
Noise reduction
Optical fibers
Optical memory (data storage)
Short term
Title Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory
URI https://www.proquest.com/docview/2642602892
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgBYkTu1hK5QNXt4nj1skJ0SUCqUvURqicKidxRCSUlCat6K_wtYzdAAckLhyTUZzIcua9GT_PIHRrcSPmNgsIZ0wQFlkOCYCXEIsJk0U0bNlaRPM04KORPZs5Xplwy0tZ5ZdP1I46ykKVI28CcAP1hvCA3i3eiOoapXZXyxYau6iqqiSYWro3_c6x0DYHxmxtNzN16a6mWL4n6walhtUwYTz2ywVrXHEP__tFR6jqiYVcHqMdmZ6gfa3nDPNT9DFe6CQ1dpUiBLti9Vrgniy08CrFIo3wQKFYeQoTJ3APj7Ik3-Cx35tggLBQ4g5AXITB3JMp2ADlcDdL1-VqhdHvV0WmKmFG8A41ZifZQuTWOsjggekLEHziAwDgoVL1bs6Q7_b97gMp2zAQAeSMmEJCCCeMUDKI7QS3RaS2ZYwW5apWnBMYQStmXMSq_aMwZNthtmVLFksH2KAwrHNUSbNUXiAsgP60YyewpUqixNzh1IhZywzaPAImKC9R7Wum5-WvlM9_pvnqb_M1OqDqbIIS2zk1VCmWK3mD9sJ1keTLOqp2-iNvUtcrBK68x6H3_Amsn8ZC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BAcGJXez4AEdD6rh1fEAIKBWIUBBEiFvlJI6IhJLSpIX-Cv_APzJ2WzggcePANaM4kZd5b8bPHoA9VziJ8HhIBeeK8tiVNEReQl2uqjxmUc2zIpoHX7Ra3uOjvJ2Aj_FZGCOrHPtE66jjPDI58kMEbqTeGB6w484LNVWjzO7quITGcFpc6cErhmzF0WUDx3efseZ5cHZBR1UFqEKuQatKY0SinEhzDFWU8FRsdhmcGhPm6jMZOmEt4UIlppqhcnRdcs_1NE-0RHKjHBebnYQpZBFMWqXg_VdKh9UFEnR3uHdqbwo7VN23tH_AmOMeVPH3-Q-Pb2GsOf_POmABpm5VR3cXYUJnSzBj1apRsQzvNx2bgidNo3chTdV7LklDl1ZWlhGVxcQ3GD06Y0pSfEZaeVoMyE3QuCMI0JEmpwjgMUFzQ2doQwwnZ3nWH61FbP2kV-bmns8Yv2HaPE2HBGBo9XN84f4JwxcaILyRa6NZHqxA8Be9sQqVLM_0GhCF5K6eyNDTJkWUCCmYk_BaNayLGHmuXoet8cC2R46iaH-P6sbv5l2YvQiu_bZ_2brahDlmTmEYWaHcgkrZ7eltmI76ZVp0d-ykJND-4znwCY9tG0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Fiber+Fault+Detection+and+Localization+in+a+Noisy+OTDR+Trace+Based+on+Denoising+Convolutional+Autoencoder+and+Bidirectional+Long+Short-Term+Memory&rft.jtitle=arXiv.org&rft.au=Abdelli%2C+Khouloud&rft.au=Griesser%2C+Helmut&rft.au=Tropschug%2C+Carsten&rft.au=Pachnicke%2C+Stephan&rft.date=2022-03-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2203.12604