A Sequential Importance Sampling Algorithm for Estimating Linear Extensions

In recent decades, a number of profound theorems concerning approximation of hard counting problems have appeared. These include estimation of the permanent, estimating the volume of a convex polyhedron, and counting (approximately) the number of linear extensions of a partially ordered set. All of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Beichl, Isabel, Jensen, Alathea
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 28.02.2020
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent decades, a number of profound theorems concerning approximation of hard counting problems have appeared. These include estimation of the permanent, estimating the volume of a convex polyhedron, and counting (approximately) the number of linear extensions of a partially ordered set. All of these results have been achieved using probabilistic sampling methods, specifically Monte Carlo Markov Chain (MCMC) techniques. In each case, a rapidly mixing Markov chain is defined that is guaranteed to produce, with high probability, an accurate result after only a polynomial number of operations. Although of polynomial complexity, none of these results lead to a practical computational technique, nor do they claim to. The polynomials are of high degree and a non-trivial amount of computing is required to get even a single sample. Our aim in this paper is to present practical Monte Carlo methods for one of these problems, counting linear extensions. Like related work on estimating the coefficients of the reliability polynomial, our technique is based on improving the so-called Knuth counting algorithm by incorporating an importance function into the node selection technique giving a sequential importance sampling (SIS) method. We define and report performance on two importance functions.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1902.01704