Latent Disentanglement in Mesh Variational Autoencoders Improves the Diagnosis of Craniofacial Syndromes and Aids Surgical Planning
The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. In this work, we will discuss the application...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
05.09.2023
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. In this work, we will discuss the application of the Swap Disentangled Variational Autoencoder (SD-VAE) with relevance to Crouzon, Apert and Muenke syndromes. Although syndrome classification is performed on the entire mesh, it is also possible, for the first time, to analyse the influence of each region of the head on the syndromic phenotype. By manipulating specific parameters of the generative model, and producing procedure-specific new shapes, it is also possible to simulate the outcome of a range of craniofacial surgical procedures. This opens new avenues to advance diagnosis, aids surgical planning and allows for the objective evaluation of surgical outcomes. |
|---|---|
| AbstractList | The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. In this work, we will discuss the application of the Swap Disentangled Variational Autoencoder (SD-VAE) with relevance to Crouzon, Apert and Muenke syndromes. Although syndrome classification is performed on the entire mesh, it is also possible, for the first time, to analyse the influence of each region of the head on the syndromic phenotype. By manipulating specific parameters of the generative model, and producing procedure-specific new shapes, it is also possible to simulate the outcome of a range of craniofacial surgical procedures. This opens new avenues to advance diagnosis, aids surgical planning and allows for the objective evaluation of surgical outcomes. |
| Author | Stoyanov, Danail Koo, Bongjin Lara S van de Lande Papaioannou, Athanasios Khonsari, Roman Schievano, Silvia Clarkson, Matthew J Rickart, Alexander J Foti, Simone N u Owase Jeelani Dunaway, David J O' Sullivan, Eimear |
| Author_xml | – sequence: 1 givenname: Simone surname: Foti fullname: Foti, Simone – sequence: 2 givenname: Alexander surname: Rickart middlename: J fullname: Rickart, Alexander J – sequence: 3 givenname: Bongjin surname: Koo fullname: Koo, Bongjin – sequence: 4 givenname: Eimear surname: O' Sullivan fullname: O' Sullivan, Eimear – sequence: 5 fullname: Lara S van de Lande – sequence: 6 givenname: Athanasios surname: Papaioannou fullname: Papaioannou, Athanasios – sequence: 7 givenname: Roman surname: Khonsari fullname: Khonsari, Roman – sequence: 8 givenname: Danail surname: Stoyanov fullname: Stoyanov, Danail – sequence: 9 fullname: N u Owase Jeelani – sequence: 10 givenname: Silvia surname: Schievano fullname: Schievano, Silvia – sequence: 11 givenname: David surname: Dunaway middlename: J fullname: Dunaway, David J – sequence: 12 givenname: Matthew surname: Clarkson middlename: J fullname: Clarkson, Matthew J |
| BookMark | eNotj1tLAzEQhYMoWGt_gG8Bn7fm0uxmH0u9QkWhxdcyTbLblO1Ek92iz_5xIwoDH8M5ZzhzQU4xoCPkirPpTCvFbiB--uNUSFZPOdNCnZCRkJIXeibEOZmktGeMibISSskR-V5C77Cntz5lALadO_zuHumzSzv6BtFD7wNCR-dDHxyaYF1M9OnwHsPRJdrvXE5DiyH5RENDFxHQhwaMz5nVF9oYDtkHaOnc20RXQ2y9ydprB4ge20ty1kCX3OSfY7K-v1svHovly8PTYr4sQAleGMmMtoyZ3B0k01WZR8ktq2rQ28ZuS8ONqU2tlK6kNVJwV0shdGO5dI7LMbn-O5uLfwwu9Zt9GGJ-LG2ELsu61Fxz-QMvhGUt |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2309.10825 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a521-c30c8d00c267a3087687653b079a8bfdb6c1cc9c955873dc321e93228fd13ee13 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:12:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a521-c30c8d00c267a3087687653b079a8bfdb6c1cc9c955873dc321e93228fd13ee13 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2866968181?pq-origsite=%requestingapplication% |
| PQID | 2866968181 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2866968181 |
| PublicationCentury | 2000 |
| PublicationDate | 20230905 |
| PublicationDateYYYYMMDD | 2023-09-05 |
| PublicationDate_xml | – month: 09 year: 2023 text: 20230905 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8432058 |
| SecondaryResourceType | preprint |
| Snippet | The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Diagnosis Disorders Finite element method Machine learning |
| Title | Latent Disentanglement in Mesh Variational Autoencoders Improves the Diagnosis of Craniofacial Syndromes and Aids Surgical Planning |
| URI | https://www.proquest.com/docview/2866968181 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66KXjyN_6YIwevZW2ytulJ5txQcKO4IfM0kjTRXtrZdMO7_7gvXacHwYuQSwmF8Ejfe_ny9fsQuhaehPX5rgPdshXVdrkDRzDukKhLoRxEPmNrs4lwPGazWRTXgJupaZWbnFgl6iSXFiPvEBZYHRcoSDeLd8e6Rtnb1dpCYxs1rVIZ7PPm7WAcP32jLCQIoWem6-vMSryrw4uPdGX5z5Hl1xH_VxKuKstw_79rOkDNmC9UcYi2VHaEditGpzTH6PMRusisxHdp9XtR9rrmieM0wyNl3vAzHJJrIBD3lmVuBS0tqRmvYQZlMLSG8HbFxEsNzjXuQ11Lc80tyo4ntdSBwTxLcC9NDJ4siyqP4o0T0gmaDgfT_r1TOy44HMq4I6krWeK6EsLGrVRgAMOnwg0jzoRORCA9KSMZ-T4LaSIp8RT0f4TpxKNKefQUNbI8U2cICx1KKggPiA66gnEWRiJxhWaKaC1DdY5am5DO66_GzH_iefH39CXas7bvFdfLb6FGWSzVFdqRqzI1RbveBG3L45zAU_wwil--AHDEwgI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RhQpOPKvSUvChHCMSe5M4B1QhHmK1D620q4qeVrZjt7kkS7wL5czv4T8yzqMcKnHjgJRbFMvOjOYbjz9_A_BdBgrnF_oeZstOVNsXHm7BhEeTLkM4SELO62YT8WjEb26S8Qo8tXdhHK2yjYlVoE4L5WrkJ5RHTscFAenH_NZzXaPc6WrbQqN2i75-uMctmz3tXaB9jym9upyeX3tNVwFPIFR5ivmKp76vaBQLJ4cX4RMy6ceJ4NKkMlKBUolKwpDHLFWMBhpzHMpNGjCtA4bDfoDVLvq634HVcW84_vWvqINjYorO6tPTSivsRJR_sztHt04cnY-G_8X8CsiuNt_ZL9jCpYu5LrdhRec78LHiqyq7C48DzJHzBbnIqstT-e-aBU-ynAy1_UN-ijJrypzkbLkonFyno2yTuoiiLcHEF7-ueIaZJYUh54jaWWGEO0Mgk0bIwRKRp-QsSy2ZLMsKJUjb52kPpm-x7E_QyYtcfwYiTayYpCKiJupKLnicyNSXhmtqjIr1Phy0Fpw1McHOXsz35fXXR7B-PR0OZoPeqP8VNlyD-4rVFh5AZ1Eu9TdYU3eLzJaHjf8RmL2xuZ8BXdEZrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Disentanglement+in+Mesh+Variational+Autoencoders+Improves+the+Diagnosis+of+Craniofacial+Syndromes+and+Aids+Surgical+Planning&rft.jtitle=arXiv.org&rft.au=Foti%2C+Simone&rft.au=Rickart%2C+Alexander+J&rft.au=Koo%2C+Bongjin&rft.au=O%27+Sullivan%2C+Eimear&rft.date=2023-09-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2309.10825 |