Latent Disentanglement in Mesh Variational Autoencoders Improves the Diagnosis of Craniofacial Syndromes and Aids Surgical Planning

The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. In this work, we will discuss the application...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Foti, Simone, Rickart, Alexander J, Koo, Bongjin, O' Sullivan, Eimear, Lara S van de Lande, Papaioannou, Athanasios, Khonsari, Roman, Stoyanov, Danail, N u Owase Jeelani, Schievano, Silvia, Dunaway, David J, Clarkson, Matthew J
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 05.09.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. In this work, we will discuss the application of the Swap Disentangled Variational Autoencoder (SD-VAE) with relevance to Crouzon, Apert and Muenke syndromes. Although syndrome classification is performed on the entire mesh, it is also possible, for the first time, to analyse the influence of each region of the head on the syndromic phenotype. By manipulating specific parameters of the generative model, and producing procedure-specific new shapes, it is also possible to simulate the outcome of a range of craniofacial surgical procedures. This opens new avenues to advance diagnosis, aids surgical planning and allows for the objective evaluation of surgical outcomes.
AbstractList The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number of barriers to accurate modelling, especially when operating on both a global and local level. In this work, we will discuss the application of the Swap Disentangled Variational Autoencoder (SD-VAE) with relevance to Crouzon, Apert and Muenke syndromes. Although syndrome classification is performed on the entire mesh, it is also possible, for the first time, to analyse the influence of each region of the head on the syndromic phenotype. By manipulating specific parameters of the generative model, and producing procedure-specific new shapes, it is also possible to simulate the outcome of a range of craniofacial surgical procedures. This opens new avenues to advance diagnosis, aids surgical planning and allows for the objective evaluation of surgical outcomes.
Author Stoyanov, Danail
Koo, Bongjin
Lara S van de Lande
Papaioannou, Athanasios
Khonsari, Roman
Schievano, Silvia
Clarkson, Matthew J
Rickart, Alexander J
Foti, Simone
N u Owase Jeelani
Dunaway, David J
O' Sullivan, Eimear
Author_xml – sequence: 1
  givenname: Simone
  surname: Foti
  fullname: Foti, Simone
– sequence: 2
  givenname: Alexander
  surname: Rickart
  middlename: J
  fullname: Rickart, Alexander J
– sequence: 3
  givenname: Bongjin
  surname: Koo
  fullname: Koo, Bongjin
– sequence: 4
  givenname: Eimear
  surname: O' Sullivan
  fullname: O' Sullivan, Eimear
– sequence: 5
  fullname: Lara S van de Lande
– sequence: 6
  givenname: Athanasios
  surname: Papaioannou
  fullname: Papaioannou, Athanasios
– sequence: 7
  givenname: Roman
  surname: Khonsari
  fullname: Khonsari, Roman
– sequence: 8
  givenname: Danail
  surname: Stoyanov
  fullname: Stoyanov, Danail
– sequence: 9
  fullname: N u Owase Jeelani
– sequence: 10
  givenname: Silvia
  surname: Schievano
  fullname: Schievano, Silvia
– sequence: 11
  givenname: David
  surname: Dunaway
  middlename: J
  fullname: Dunaway, David J
– sequence: 12
  givenname: Matthew
  surname: Clarkson
  middlename: J
  fullname: Clarkson, Matthew J
BookMark eNotj1tLAzEQhYMoWGt_gG8Bn7fm0uxmH0u9QkWhxdcyTbLblO1Ek92iz_5xIwoDH8M5ZzhzQU4xoCPkirPpTCvFbiB--uNUSFZPOdNCnZCRkJIXeibEOZmktGeMibISSskR-V5C77Cntz5lALadO_zuHumzSzv6BtFD7wNCR-dDHxyaYF1M9OnwHsPRJdrvXE5DiyH5RENDFxHQhwaMz5nVF9oYDtkHaOnc20RXQ2y9ydprB4ge20ty1kCX3OSfY7K-v1svHovly8PTYr4sQAleGMmMtoyZ3B0k01WZR8ktq2rQ28ZuS8ONqU2tlK6kNVJwV0shdGO5dI7LMbn-O5uLfwwu9Zt9GGJ-LG2ELsu61Fxz-QMvhGUt
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2309.10825
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-c30c8d00c267a3087687653b079a8bfdb6c1cc9c955873dc321e93228fd13ee13
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:12:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-c30c8d00c267a3087687653b079a8bfdb6c1cc9c955873dc321e93228fd13ee13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2866968181?pq-origsite=%requestingapplication%
PQID 2866968181
PQPubID 2050157
ParticipantIDs proquest_journals_2866968181
PublicationCentury 2000
PublicationDate 20230905
PublicationDateYYYYMMDD 2023-09-05
PublicationDate_xml – month: 09
  year: 2023
  text: 20230905
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8432058
SecondaryResourceType preprint
Snippet The use of deep learning to undertake shape analysis of the complexities of the human head holds great promise. However, there have traditionally been a number...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Diagnosis
Disorders
Finite element method
Machine learning
Title Latent Disentanglement in Mesh Variational Autoencoders Improves the Diagnosis of Craniofacial Syndromes and Aids Surgical Planning
URI https://www.proquest.com/docview/2866968181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66KXjyN_6YIwevZW2ytulJ5txQcKO4IfM0kjTRXtrZdMO7_7gvXacHwYuQSwmF8Ejfe_ny9fsQuhaehPX5rgPdshXVdrkDRzDukKhLoRxEPmNrs4lwPGazWRTXgJupaZWbnFgl6iSXFiPvEBZYHRcoSDeLd8e6Rtnb1dpCYxs1rVIZ7PPm7WAcP32jLCQIoWem6-vMSryrw4uPdGX5z5Hl1xH_VxKuKstw_79rOkDNmC9UcYi2VHaEditGpzTH6PMRusisxHdp9XtR9rrmieM0wyNl3vAzHJJrIBD3lmVuBS0tqRmvYQZlMLSG8HbFxEsNzjXuQ11Lc80tyo4ntdSBwTxLcC9NDJ4siyqP4o0T0gmaDgfT_r1TOy44HMq4I6krWeK6EsLGrVRgAMOnwg0jzoRORCA9KSMZ-T4LaSIp8RT0f4TpxKNKefQUNbI8U2cICx1KKggPiA66gnEWRiJxhWaKaC1DdY5am5DO66_GzH_iefH39CXas7bvFdfLb6FGWSzVFdqRqzI1RbveBG3L45zAU_wwil--AHDEwgI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RhQpOPKvSUvChHCMSe5M4B1QhHmK1D620q4qeVrZjt7kkS7wL5czv4T8yzqMcKnHjgJRbFMvOjOYbjz9_A_BdBgrnF_oeZstOVNsXHm7BhEeTLkM4SELO62YT8WjEb26S8Qo8tXdhHK2yjYlVoE4L5WrkJ5RHTscFAenH_NZzXaPc6WrbQqN2i75-uMctmz3tXaB9jym9upyeX3tNVwFPIFR5ivmKp76vaBQLJ4cX4RMy6ceJ4NKkMlKBUolKwpDHLFWMBhpzHMpNGjCtA4bDfoDVLvq634HVcW84_vWvqINjYorO6tPTSivsRJR_sztHt04cnY-G_8X8CsiuNt_ZL9jCpYu5LrdhRec78LHiqyq7C48DzJHzBbnIqstT-e-aBU-ynAy1_UN-ijJrypzkbLkonFyno2yTuoiiLcHEF7-ueIaZJYUh54jaWWGEO0Mgk0bIwRKRp-QsSy2ZLMsKJUjb52kPpm-x7E_QyYtcfwYiTayYpCKiJupKLnicyNSXhmtqjIr1Phy0Fpw1McHOXsz35fXXR7B-PR0OZoPeqP8VNlyD-4rVFh5AZ1Eu9TdYU3eLzJaHjf8RmL2xuZ8BXdEZrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Disentanglement+in+Mesh+Variational+Autoencoders+Improves+the+Diagnosis+of+Craniofacial+Syndromes+and+Aids+Surgical+Planning&rft.jtitle=arXiv.org&rft.au=Foti%2C+Simone&rft.au=Rickart%2C+Alexander+J&rft.au=Koo%2C+Bongjin&rft.au=O%27+Sullivan%2C+Eimear&rft.date=2023-09-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2309.10825