Hierarchical Convolutional Neural Network with Feature Preservation and Autotuned Thresholding for Crack Detection

Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Zhu, Qiuchen, Tran, Hiep Dinh, Manh Duong Phung, Ha, Quang Phuc
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.04.2021
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (AF\b{eta}) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of AF\b{eta} while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
AbstractList Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure (AF\b{eta}) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of AF\b{eta} while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.
Author Tran, Hiep Dinh
Manh Duong Phung
Zhu, Qiuchen
Ha, Quang Phuc
Author_xml – sequence: 1
  givenname: Qiuchen
  surname: Zhu
  fullname: Zhu, Qiuchen
– sequence: 2
  givenname: Hiep
  surname: Tran
  middlename: Dinh
  fullname: Tran, Hiep Dinh
– sequence: 3
  fullname: Manh Duong Phung
– sequence: 4
  givenname: Quang
  surname: Ha
  middlename: Phuc
  fullname: Ha, Quang Phuc
BookMark eNotj8tOwzAURC0EEqX0A9hZYp3iR2wnyypQilQBi-6rG-eGpI1scOyWz6cFVkejORppbsil8w4JueNsnhdKsQcI3_1hLjjL55wpzi_IREjJsyIX4prMxnHHGBPaCKXkhIRVjwGC7XoLA628O_ghxd67U3rFFH4Rjz7s6bGPHV0ixBSQvgccMRzgrFJwDV2k6GNy2NBNd-o6PzS9-6CtD7QKYPf0ESPas35LrloYRpz9c0o2y6dNtcrWb88v1WKdgRI8g7JVkmlp69oCilJZCxxNWXPetlrYsmh0m4M0hiGiVXUOQpe1lNqUhikrp-T-b_Yz-K-EY9zufAqnX-NWKK5VqUzB5Q9sn2A8
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2104.10511
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-a9f53063cbbcae295cca1e79b11ff62c98d6f4a3770eeec5b4a269b33679705c3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:21:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-a9f53063cbbcae295cca1e79b11ff62c98d6f4a3770eeec5b4a269b33679705c3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2516595781?pq-origsite=%requestingapplication%
PQID 2516595781
PQPubID 2050157
ParticipantIDs proquest_journals_2516595781
PublicationCentury 2000
PublicationDate 20210421
PublicationDateYYYYMMDD 2021-04-21
PublicationDate_xml – month: 04
  year: 2021
  text: 20210421
  day: 21
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7554286
SecondaryResourceType preprint
Snippet Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Artificial neural networks
Bridge inspection
Datasets
Feature extraction
Feature maps
Hazardous areas
Image processing
Machine learning
Machine vision
Monorails
Neural networks
Occultation
Post-production processing
Surface cracks
Surface defects
Unmanned aerial vehicles
Title Hierarchical Convolutional Neural Network with Feature Preservation and Autotuned Thresholding for Crack Detection
URI https://www.proquest.com/docview/2516595781
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3iUygNraOwkdjIhKFRloIqgQ5kq27lIFSgpeVT8fGzjwoDEwhRZWSJffPfd3ef7ELoE4DHj4JvcJPdCSqU-UkJ5Ec-EyOKYARdWbIJPJvFslqSu4FY7WuXaJ1pHnZXK1MgHOg6b0Xc8JtfLd8-oRpnuqpPQ2ERdMyWBWOre83eNhTKuEXPw1cy0o7sGovpYrK50nhMahVtCfrlgG1dGu__9oj3UTcUSqn20AcUB2rZ8TlUfomq8MDeLrdDJGx6Wxcr9Ynpl5nHYhyWAY1OJxQYJthVgw8hYl2mxKDJ80zZl02pfjKfa6rVrVmENdfGwEuoV30Fj2VzFEZqO7qfDsefkFTyhY7YnkjzS-UKgpFQCaBJpWxLgiSQkzxlVSZyxPBQB5z4AqEiGgrJEBgHjCfcjFRyjTlEWcIKwhoBcZrEiueShCqQEDQIYGO0YDT9AnaLeegfn7ojU85_tO_v79TnaoYZI4oceJT3UaaoWLtCWWjWLuuqj7u39JH3qW8vrVfrwmL58AuV2vHE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6Vl2DiLR4FPMAYaJyHkwEhVKhaFSokOrBVtnORKlAKSVrgR_EfObsNDEhsDExRFMmSc_bdd3ef_QEcI4ooFNgwuUnq-Jwr2lJSO4FIpEyiKEQhrdiE6PWih4f4rgYf1VkYQ6usfKJ11MlImxr5GcVhc_WdiNyL5xfHqEaZ7moloTFdFl18f6WUrTjvXJF9TzhvXfebbWemKuBIClWOjNOAYLKnldISeRzQFFwUsXLdNA25jqMkTH3pCdFARB0oX_IwVp4Xilg0Au3RsHOwQCiCx5YpeP9V0uGhIIDuTXun9qawM5m_DSenlFb5RlDXdX94fBvGWqv_7AeswcKdfMZ8HWqYbcCSZavqYhPy9tCcm7YyLk-sOcomsw1Eb-a2Efuw9HZm6szM4NxxjszwTaoiNJNZwi7H5agcU6RhfVrTxawVxwjIs2Yu9SO7wtJy1bIt6P_FLLdhPhtluAOMAK5QSaTdVAlfe0ohQZwQjTIOgSvUu1CvDDaYOYBi8G2tvd8_H8Fyu397M7jp9Lr7sMINZabhO9ytw3yZj_EAFvWkHBb5oV1sDAZ_bNtPxugWKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Convolutional+Neural+Network+with+Feature+Preservation+and+Autotuned+Thresholding+for+Crack+Detection&rft.jtitle=arXiv.org&rft.au=Zhu%2C+Qiuchen&rft.au=Tran%2C+Hiep+Dinh&rft.au=Manh+Duong+Phung&rft.au=Ha%2C+Quang+Phuc&rft.date=2021-04-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2104.10511