Relative cluster entropy for power-law correlated sequences
We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions characterised by probability distribution functions \(P\) and \(Q\). The measure is illustrated with the clusters generated by pairs of fraction...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
09.08.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions characterised by probability distribution functions \(P\) and \(Q\). The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents \(H_1\) and \(H_2\) respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between \(H_1\) and \(H_2\). By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents \(H_1=0.55\), \(H_1=0.57\), and \(H_1=0.63\) respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables. |
|---|---|
| AbstractList | We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions characterised by probability distribution functions \(P\) and \(Q\). The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents \(H_1\) and \(H_2\) respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between \(H_1\) and \(H_2\). By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents \(H_1=0.55\), \(H_1=0.57\), and \(H_1=0.63\) respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables. |
| Author | Carbone, A Ponta, L |
| Author_xml | – sequence: 1 givenname: A surname: Carbone fullname: Carbone, A – sequence: 2 givenname: L surname: Ponta fullname: Ponta, L |
| BookMark | eNotj0FLw0AUhBdRsNb-AG8Bz4m7b_clGzxJ0SoUBOm9vGzeQkvIxt2k1X9vRJnDHGaYj7kRl33oWYg7JQtjEeUDxa_DqQCQZSGhtHghFqC1yq0BuBarlI5SzkEFiHohHj-4o_Fw4sx1Uxo5ZtyPMQzfmQ8xG8KZY97ROXMhxt8mt1niz4l7x-lWXHnqEq_-fSl2L8-79Wu-fd-8rZ-2OSGonIDQatfqyrErlSfJBktrKgJborKzNGls0ZimsYq89YSqbhtwHmol9VLc_80OMczkNO6PYYr9TNzPN3SloNZK_wDgy0r4 |
| ContentType | Paper |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2206.02685 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a521-a2a583cd37cec61fa0e456847a2865181813a35d544bb81af8fa519db2cf29103 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:28:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a521-a2a583cd37cec61fa0e456847a2865181813a35d544bb81af8fa519db2cf29103 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2673712931?pq-origsite=%requestingapplication% |
| PQID | 2673712931 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2673712931 |
| PublicationCentury | 2000 |
| PublicationDate | 20220809 |
| PublicationDateYYYYMMDD | 2022-08-09 |
| PublicationDate_xml | – month: 08 year: 2022 text: 20220809 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8030858 |
| SecondaryResourceType | preprint |
| Snippet | We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Clustering Continuity (mathematics) Distribution functions Divergence Entropy Exponents Pricing Probability distribution Probability distribution functions |
| Title | Relative cluster entropy for power-law correlated sequences |
| URI | https://www.proquest.com/docview/2673712931 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20VfDkN1VrycHr2u5ukq54EJQWBS1Bi9RT2Ww2UChtTNqq_96ZbVoPghePIQmEyTLv7czbeQAXCKqJbAvJqAvFfNVSLKa1rDnCQRIaq5zK9_Wx3eupweAqKgtuRSmrXOVEl6iTqaEaeVOQoQqBE7_J3hm5RlF3tbTQ2IQqTUngTrr3sq6x4DvImOWymelGdzV1_jlaXApBPQgRquBXCna40t397xftQTXSmc33YcNODmDb6TlNcQjXS5HbwnpmPKdZCB5VcafZl4ck1cvIGo2N9YdnyJwDn7SJtxZVH0G_2-nf3bPSJ4FpBF-mhQ6UNBhyY03IU92yyIoQdTSdOkUEV1xqGSSB78ex4jpVqUbelsTCpALZgjyGymQ6sTXwuI_bDdzRSWW5b-MgDgwPtU6RBtJYd3MC9VUohuVaL4Y_cTj9-_YZ7Ag6POAEF3WozPK5PYcts5iNirwB1dtOL3puuF-IV9HDU_T2DTwopTI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHirvbliXGeFAJBCQkEsONbLfbhIRAbXnIj_I_OrtQPJh44-C5TTOZnc43j29nAK4RVENeZtwxXSjHFXfCCYwtS4pwEPpKC8vyfW-WWy3R7VbaOfjK7sIYWmXmE62jDkfK1MhLzCxUMeBEH-MPx2yNMt3VbIXGwiwaej7DlC19qD_j-d4wVn3pPNWc5VYBRyJUOZJJT3CFAiqtfBrJO40xBPpoae5oIt4JyiX3Qs91g0BQGYlIYpQTBkxFDLGV42c3oIBRBKtYpuDbqqSDImKAzhe9UzsprCSTz_70ljHT8mC-8H55fAtj1d1_poA9KLRlrJN9yOnhAWxZtqpKD-F-QeGbaqIGEzPpgZga9SieEwzBSWwWvzkDOSPKrB7BN3VIVpTxI-isQ9xjyA9HQ30ChLqYTGG-yoWmrg68wFPUlzLCINcMrVenUMw031v-yWnvR-1nfz--gu1a57XZa9ZbjXPYYeaahKWWFCE_Tib6AjbVdNxPk0trNQR6az6kb5X3_Gc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+cluster+entropy+for+power-law+correlated+sequences&rft.jtitle=arXiv.org&rft.au=Carbone%2C+A&rft.au=Ponta%2C+L&rft.date=2022-08-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2206.02685 |