Relative cluster entropy for power-law correlated sequences

We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions characterised by probability distribution functions \(P\) and \(Q\). The measure is illustrated with the clusters generated by pairs of fraction...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Carbone, A, Ponta, L
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 09.08.2022
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions characterised by probability distribution functions \(P\) and \(Q\). The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents \(H_1\) and \(H_2\) respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between \(H_1\) and \(H_2\). By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents \(H_1=0.55\), \(H_1=0.57\), and \(H_1=0.63\) respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.
AbstractList We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions characterised by probability distribution functions \(P\) and \(Q\). The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents \(H_1\) and \(H_2\) respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between \(H_1\) and \(H_2\). By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents \(H_1=0.55\), \(H_1=0.57\), and \(H_1=0.63\) respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.
Author Carbone, A
Ponta, L
Author_xml – sequence: 1
  givenname: A
  surname: Carbone
  fullname: Carbone, A
– sequence: 2
  givenname: L
  surname: Ponta
  fullname: Ponta, L
BookMark eNotj0FLw0AUhBdRsNb-AG8Bz4m7b_clGzxJ0SoUBOm9vGzeQkvIxt2k1X9vRJnDHGaYj7kRl33oWYg7JQtjEeUDxa_DqQCQZSGhtHghFqC1yq0BuBarlI5SzkEFiHohHj-4o_Fw4sx1Uxo5ZtyPMQzfmQ8xG8KZY97ROXMhxt8mt1niz4l7x-lWXHnqEq_-fSl2L8-79Wu-fd-8rZ-2OSGonIDQatfqyrErlSfJBktrKgJborKzNGls0ZimsYq89YSqbhtwHmol9VLc_80OMczkNO6PYYr9TNzPN3SloNZK_wDgy0r4
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2206.02685
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-a2a583cd37cec61fa0e456847a2865181813a35d544bb81af8fa519db2cf29103
IEDL.DBID M7S
IngestDate Mon Jun 30 09:28:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-a2a583cd37cec61fa0e456847a2865181813a35d544bb81af8fa519db2cf29103
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2673712931?pq-origsite=%requestingapplication%
PQID 2673712931
PQPubID 2050157
ParticipantIDs proquest_journals_2673712931
PublicationCentury 2000
PublicationDate 20220809
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 20220809
  day: 09
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8029841
SecondaryResourceType preprint
Snippet We propose an information-theoretical measure, the \textit{relative cluster entropy} \(\mathcal{D_{C}}[P \| Q] \), to discriminate among cluster partitions...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Clustering
Continuity (mathematics)
Distribution functions
Divergence
Entropy
Exponents
Pricing
Probability distribution
Probability distribution functions
Title Relative cluster entropy for power-law correlated sequences
URI https://www.proquest.com/docview/2673712931
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7opuDJ3_hjjh68xq1J02Z4EJQNBR1Fh8zTSF8SGIxtttvU_94k6-ZB8OKxNIXymr7v470v7wO4RC5sYtQhYZIyEqFRpJXxkGRCs0TxOIv9LL3Xx6TbFf1-Ky0LbkUpq1zlRJ-o1QRdjbxBnaGKA6fwZvpOnGuU666WFhqbUHVTEkIv3XtZ11jsM5Yxs2Uz04_uasj8c7i4otT1IGgs-K8U7HGls_vfN9qDaiqnOt-HDT0-gG2v58TiEK6XIreFDnA0d7MQAlfFnUy_AktSg6mzRiMj-RGgM-ewK7UK1qLqI-h12r27e1L6JBBpwZdIKm3AUbEENcahkU1tWZFFHelOnVoEFyGTjCseRVkmQmmEkZa3qYyioZYtsGOojCdjfQIBQ4yEiZXgikba_pq8hQwzbuxS02TJKdRWoRiUe70Y_MTh7O_b57BD3eEBL7ioQWWWz_UFbOFiNizyOlRv2930ue4_ob1KH57St2_OP6cA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Qe9Djit3tlm2M8aASCEhIJIYb2e5uExICtbzkR_kfnS0UDybeOHjuppnMbr-Zznw7H8C14gKB0biEScqIpyJNgpC7JBSGlTX3Qz-dpffeKDebotMJWjn4yu7CWFplhokpUOuhsjXyErWCKjY4uY_xB7GqUba7mkloLI5F3cxn-Ms2eqg94_7eUFp5aT9VyVJVgEgMVURSieYpzcrKKN-N5J3BHAIxWto7mhjvhMsk45p7XhgKV0Yikpjl6JCqiGJsZfjaDShgFkGDlCn4tirpoImYoLNF7zSdFFaSyWdvekupbXlQX_BfiJ-GscruP3PAHhRaMjbJPuTM4AC2UraqGh3C_YLCNzWO6k_spAfH1qiH8dzBFNyJrfAb6cuZo6z0CK402llRxo-gvQ5zjyE_GA7MCThMKU9EvhZcU88g8PBAMRXyCJdGd6x8CsXM893llzzq_rj97O_HV7Bdbb82uo1as34OO9Rek0ipJUXIj5OJuYBNNR33Rsllemoc6K55k74Bos7-NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+cluster+entropy+for+power-law+correlated+sequences&rft.jtitle=arXiv.org&rft.au=Carbone%2C+A&rft.au=Ponta%2C+L&rft.date=2022-08-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2206.02685