Variational autoencoder reconstruction of complex many-body physics

Given the notably increasing complexity of mathematical models to study realistic systems and their coupling to their environment that constrains their dynamics, both analytical approaches and numerical methods that build on these models, show limitations in scope or applicability. On the other hand...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Luchnikov, I, Ryzhov, A, Stas, P -J C, Filippov, S N, Ouerdane, H
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 09.10.2019
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given the notably increasing complexity of mathematical models to study realistic systems and their coupling to their environment that constrains their dynamics, both analytical approaches and numerical methods that build on these models, show limitations in scope or applicability. On the other hand, machine learning, i.e. data-driven, methods prove to be increasingly efficient for the study of complex quantum systems. Deep neural networks in particular have been successfully applied to many-body quantum dynamics simulations and to quantum matter phase characterization. In the present work, we show how to use a variational autoencoder (VAE) -- a state-of-the-art tool in the field of deep learning for the simulation of probability distributions of complex systems. More precisely, we transform a quantum mechanical problem of many-body state reconstruction into a statistical problem, suitable for VAE, by using informationally complete positive operator-valued measure. We show with the paradigmatic quantum Ising model in a transverse magnetic field, that the ground-state physics, such as, e.g., magnetization and other mean values of observables, of a whole class of quantum many-body systems can be reconstructed by using VAE learning of tomographic data, for different parameters of the Hamiltonian, and even if the system undergoes a quantum phase transition. We also discuss challenges related to our approach as entropy calculations pose particular difficulties.
AbstractList Given the notably increasing complexity of mathematical models to study realistic systems and their coupling to their environment that constrains their dynamics, both analytical approaches and numerical methods that build on these models, show limitations in scope or applicability. On the other hand, machine learning, i.e. data-driven, methods prove to be increasingly efficient for the study of complex quantum systems. Deep neural networks in particular have been successfully applied to many-body quantum dynamics simulations and to quantum matter phase characterization. In the present work, we show how to use a variational autoencoder (VAE) -- a state-of-the-art tool in the field of deep learning for the simulation of probability distributions of complex systems. More precisely, we transform a quantum mechanical problem of many-body state reconstruction into a statistical problem, suitable for VAE, by using informationally complete positive operator-valued measure. We show with the paradigmatic quantum Ising model in a transverse magnetic field, that the ground-state physics, such as, e.g., magnetization and other mean values of observables, of a whole class of quantum many-body systems can be reconstructed by using VAE learning of tomographic data, for different parameters of the Hamiltonian, and even if the system undergoes a quantum phase transition. We also discuss challenges related to our approach as entropy calculations pose particular difficulties.
Author Luchnikov, I
Filippov, S N
Stas, P -J C
Ryzhov, A
Ouerdane, H
Author_xml – sequence: 1
  givenname: I
  surname: Luchnikov
  fullname: Luchnikov, I
– sequence: 2
  givenname: A
  surname: Ryzhov
  fullname: Ryzhov, A
– sequence: 3
  givenname: P
  surname: Stas
  middlename: -J C
  fullname: Stas, P -J C
– sequence: 4
  givenname: S
  surname: Filippov
  middlename: N
  fullname: Filippov, S N
– sequence: 5
  givenname: H
  surname: Ouerdane
  fullname: Ouerdane, H
BookMark eNotjs1KxDAYRYMoOI7zAO4Krjvmy5c06VKKfzDgZnA7pPnBDp2kJq1M396Kri7cczncG3IZYnCE3AHdciUEfdDp3H1voV4KirWQF2TFEKFUnLFrssn5SClllWRC4Io0Hzp1euxi0H2hpzG6YKJ1qUjOxJDHNJlfWERfmHgaencuTjrMZRvtXAyfc-5MviVXXvfZbf5zTfbPT_vmtdy9v7w1j7tSCwZlrVzVagrQttKoigvUHmzdSo-2YkZKUXMQRgm1DDi1yJX3Ho2SIBS3gGty_6cdUvyaXB4Pxzil5Xc-MKTIeQUK8Af9l04-
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1910.03957
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-98e6ba011bb7c86453af1d9b7f3d62c7759415c858bb740d348fff3c871584d13
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-98e6ba011bb7c86453af1d9b7f3d62c7759415c858bb740d348fff3c871584d13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2303446181?pq-origsite=%requestingapplication%
PQID 2303446181
PQPubID 2050157
ParticipantIDs proquest_journals_2303446181
PublicationCentury 2000
PublicationDate 20191009
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 20191009
  day: 09
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7015071
SecondaryResourceType preprint
Snippet Given the notably increasing complexity of mathematical models to study realistic systems and their coupling to their environment that constrains their...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Complex systems
Complexity
Computer simulation
Ising model
Machine learning
Mathematical models
Neural networks
Numerical methods
Phase transitions
Quantum mechanics
Reconstruction
Statistical analysis
Title Variational autoencoder reconstruction of complex many-body physics
URI https://www.proquest.com/docview/2303446181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0oaOLJ7_iBpAevBcrudrcnEwlEEyWNEoMnst2PxIMUWyT4751dCh5MvHhr0x7abTvz3szrG4BrzhHk6wi5CWE8pLE2oRurjVuRlCZTlkj_o_ADHw7FeJykVcGtrGSV65joA7XOlauRtxEqE6QumJBuZh-hmxrluqvVCI1tqDunMlqD-m1_mD5tqizdmCNmJqt2pjfvasti-bZoIU3ptDquSfUrCPvMMtj_7zUdQD2VM1McwpaZHsGuV3Sq8hh6L8iCq0pfID_nuXOs1KYIPAXe2MYGuQ28rNwsg3cMDGGW669gVe8oT2A06I96d2E1MSGUzEkthIkziV9slnElYsqItJFOMm6JjruKc5ZgvlaCCTyBdjShwlpLFJImxCE6IqdQm-ZTcwaBpMRorRVx_uhCE0FZRhWSM8qSrmTiHBrrJZlUb305-VmPi78PX8IeAo_Ei-KSBtTwns0V7KjF_K0smtVDbDod5jPupfeP6es3L42qMA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Qe9BjgXa33e3BeEAJhEc4EIMnst3dJhykSBHhR_kfnS0tHky8efDWpE3T3ZnOzDfz7QzALWMY5CsHsQnxmE19pW0zVhuvHCF0KCMi0oPCHdbr8eEw6BfgMz8LY2iVuU1MDbWKpcmRVzFUJghd0CE9TN9sMzXKVFfzERprtWjr1QdCtuS-9YjyvXPdxtOg3rSzqQK28AwdgWs_FKjVYcgk96lHROSoIGQRUb4rGfMC9GmSexwfoDVFKI-iiEgEFuirlUPwtVtQoqjrvAilfqvbf9kkdVyfYYhO1tXTtFdYVcyW40UFUVGtUjM1sR82P3Vkjf1_tgUHuHQx1bNDKOjJEeykfFWZHEP9GTF-lse0xPs8Nv04lZ5ZKcDfNMW14shKSfN6ab2i2bPDWK2sdTYnOYHBX3z2KRQn8USfgSUo0UopSUz3d64Ip15IJUJP6gWu8Pg5lHMJjLJ_Ohl9b__F77dvYLc56HZGnVavfQl7GGIFKf0vKEMR16-vYFsu5uNkdp3pjwWjPxbXF7CJAhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+autoencoder+reconstruction+of+complex+many-body+physics&rft.jtitle=arXiv.org&rft.au=Luchnikov%2C+I&rft.au=Ryzhov%2C+A&rft.au=Stas%2C+P+-J+C&rft.au=Filippov%2C+S+N&rft.date=2019-10-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1910.03957