PasMoQAP: A Parallel Asynchronous Memetic Algorithm for solving the Multi-Objective Quadratic Assignment Problem

Multi-Objective Optimization Problems (MOPs) have attracted growing attention during the last decades. Multi-Objective Evolutionary Algorithms (MOEAs) have been extensively used to address MOPs because are able to approximate a set of non-dominated high-quality solutions. The Multi-Objective Quadrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Sanhueza, Claudio, Jimenez, Francia, Berretta, Regina, Moscato, Pablo
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.06.2017
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-Objective Optimization Problems (MOPs) have attracted growing attention during the last decades. Multi-Objective Evolutionary Algorithms (MOEAs) have been extensively used to address MOPs because are able to approximate a set of non-dominated high-quality solutions. The Multi-Objective Quadratic Assignment Problem (mQAP) is a MOP. The mQAP is a generalization of the classical QAP which has been extensively studied, and used in several real-life applications. The mQAP is defined as having as input several flows between the facilities which generate multiple cost functions that must be optimized simultaneously. In this study, we propose PasMoQAP, a parallel asynchronous memetic algorithm to solve the Multi-Objective Quadratic Assignment Problem. PasMoQAP is based on an island model that structures the population by creating sub-populations. The memetic algorithm on each island individually evolve a reduced population of solutions, and they asynchronously cooperate by sending selected solutions to the neighboring islands. The experimental results show that our approach significatively outperforms all the island-based variants of the multi-objective evolutionary algorithm NSGA-II. We show that PasMoQAP is a suitable alternative to solve the Multi-Objective Quadratic Assignment Problem.
AbstractList Multi-Objective Optimization Problems (MOPs) have attracted growing attention during the last decades. Multi-Objective Evolutionary Algorithms (MOEAs) have been extensively used to address MOPs because are able to approximate a set of non-dominated high-quality solutions. The Multi-Objective Quadratic Assignment Problem (mQAP) is a MOP. The mQAP is a generalization of the classical QAP which has been extensively studied, and used in several real-life applications. The mQAP is defined as having as input several flows between the facilities which generate multiple cost functions that must be optimized simultaneously. In this study, we propose PasMoQAP, a parallel asynchronous memetic algorithm to solve the Multi-Objective Quadratic Assignment Problem. PasMoQAP is based on an island model that structures the population by creating sub-populations. The memetic algorithm on each island individually evolve a reduced population of solutions, and they asynchronously cooperate by sending selected solutions to the neighboring islands. The experimental results show that our approach significatively outperforms all the island-based variants of the multi-objective evolutionary algorithm NSGA-II. We show that PasMoQAP is a suitable alternative to solve the Multi-Objective Quadratic Assignment Problem.
Author Moscato, Pablo
Jimenez, Francia
Sanhueza, Claudio
Berretta, Regina
Author_xml – sequence: 1
  givenname: Claudio
  surname: Sanhueza
  fullname: Sanhueza, Claudio
– sequence: 2
  givenname: Francia
  surname: Jimenez
  fullname: Jimenez, Francia
– sequence: 3
  givenname: Regina
  surname: Berretta
  fullname: Berretta, Regina
– sequence: 4
  givenname: Pablo
  surname: Moscato
  fullname: Moscato, Pablo
BookMark eNotjl1LwzAYRoMoOOd-gHcBrzvfpE3aeleGX7CxDnY_0vbNlpEmM2mH_nuHenWunvOcO3LtvENCHhjMs0IIeFLhy5znLAc5hyIHuCITnqYsKTLOb8ksxiMAcJlzIdIJOdUqrvymqp9pRWsVlLVoaRW_XXsI3vkx0hX2OJiWVnbvgxkOPdU-0Ojt2bg9HQ5IV6MdTLJujtgO5ox0M6ouqN9NjGbvenQDrYNvLPb35EYrG3H2zynZvr5sF-_Jcv32saiWiRL8EquFFpfOBpiUOSoAzZVmupNdVjYlAGYoZJPqQhcqw6aVjMuyK0sJbQFFlk7J45_2FPzniHHYHf0Y3OVxxyFnJedcsvQHPzNdkw
ContentType Paper
Copyright 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1706.08700
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-8f5f5000b01667ea00f2af1fd6d49b900e4e56b3f8f8a4ebc61269d9960c80843
IEDL.DBID M7S
IngestDate Mon Jun 30 09:34:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-8f5f5000b01667ea00f2af1fd6d49b900e4e56b3f8f8a4ebc61269d9960c80843
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2071922261?pq-origsite=%requestingapplication%
PQID 2071922261
PQPubID 2050157
ParticipantIDs proquest_journals_2071922261
PublicationCentury 2000
PublicationDate 20170627
PublicationDateYYYYMMDD 2017-06-27
PublicationDate_xml – month: 06
  year: 2017
  text: 20170627
  day: 27
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6266538
SecondaryResourceType preprint
Snippet Multi-Objective Optimization Problems (MOPs) have attracted growing attention during the last decades. Multi-Objective Evolutionary Algorithms (MOEAs) have...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Evolutionary algorithms
Manufacturing cells
Mopping
Multiple cost functions
Multiple objective analysis
Operations research
Optimization
Traveling salesman problem
Title PasMoQAP: A Parallel Asynchronous Memetic Algorithm for solving the Multi-Objective Quadratic Assignment Problem
URI https://www.proquest.com/docview/2071922261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgBYkTu1hK5QPXlOwLFxRQK5BocaFC5YTsxIaiNi1JW8HfM-OmcEDiwjGKEkXOeN7z83geIacyBJosLGXYwnZRuokMIZSCpQrQVy8CRNWN5x9vg04n7PcjVgpuRVlWucyJOlGn4wQ1clRCgIwAWbAuJu8Gukbh7mppobFKqtglwdKlew_fGovtB8CYncVmpm7ddcbzj8G8gT1jGiaEqvkrBWtcaW3-94u2SJXxicy3yYrMdsi6rudMil0yYbxoj7sxO6cxZTxHx5QhjYvPLMFuuLDcp205wgOMNB6-wFunryMK_JVCKKLEQIEXUn0417gTb4ukSLsznmLAwDMF1n2gsEjZwpFmj_Razd7VtVGaKxgcENsIlafQC0EA5fMDyU1T2VxZKvVTNxKRaUpXer5wVKhC7kqRABPyoxR7uSShGbrOPqlk40weEBpxxxdpGqSAh65yZQhoKGwPgkD6ElZ3h6S2HL_ncoIUzz-Dd_T37WOyYSOSmr5hBzVSmeYzeULWkvl0UOR1Ur1sdth9Xf93uGI3bfb0BZdWuG0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT8JAFH5B0OjJPS6oc9BjsQyli4kxjUo0ApZIjDcy0864RBZbcPlR_kffK1QPJt44eG7aZPq2733zFoB95SJMlmVtcMktom48Q0qtMVVB-Fr1MKKmg-dv606z6d7deUEOPrNeGCqrzHxi6qijfkgcOTEhCEYQLJRPBi8GbY2i29VshcZYLa7UxxumbMnx5RnK94Dz2nn79MKYbBUwBIYqw9VVTUsAJGId21HCNDUXuqwjO7I86ZmmslTVlhXtaldYSoYIAWwvoiEmoWu6VgU_OwMFRBHcSysFb74pHW47CNAr47vTdFLYoYjfH19LNKKmZKJlmL88fhrGaov_7AcsQSEQAxUvQ071VmAurVYNk1UYBCJp9Ft-cMR8FoiY9sE8Mz_56IU067c_SlhDdak9k_nP93iI4UOXITpnaGhEoDBEvSxtPTau5dPY5bPWSERkDvhOQlUtRJuyYLxvZw3a0zjjOuR7_Z7aAOaJii2jyIkw2lvaUi7GesmrqOLKVpi7bkIxE1dnYv5J50dWW38_3oP5i3aj3qlfNq-2YYETZjBtgztFyA_jkdqB2fB1-JjEu6mqMehMWbJfm3sP4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PasMoQAP%3A+A+Parallel+Asynchronous+Memetic+Algorithm+for+solving+the+Multi-Objective+Quadratic+Assignment+Problem&rft.jtitle=arXiv.org&rft.au=Sanhueza%2C+Claudio&rft.au=Jimenez%2C+Francia&rft.au=Berretta%2C+Regina&rft.au=Moscato%2C+Pablo&rft.date=2017-06-27&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1706.08700