Singular Abreu equations and minimizers of convex functionals with a convexity constraint

We study the solvability of second boundary value problems of fourth order equations of Abreu type arising from approximation of convex functionals whose Lagrangians depend on the gradient variable, subject to a convexity constraint. These functionals arise in different scientific disciplines such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
1. Verfasser: Le, Nam Q
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.12.2019
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the solvability of second boundary value problems of fourth order equations of Abreu type arising from approximation of convex functionals whose Lagrangians depend on the gradient variable, subject to a convexity constraint. These functionals arise in different scientific disciplines such as Newton's problem of minimal resistance in physics and monopolist's problem in economics. The right hand sides of our Abreu type equations are quasilinear expressions of second order; they are highly singular and a priori just measures. However, our analysis in particular shows that minimizers of the 2D Rochet-Choné model perturbed by a strictly convex lower order term, under a convexity constraint, can be approximated in the uniform norm by solutions of the second boundary value problems of singular Abreu equations.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1811.02355