A Variant of Concurrent Constraint Programming on GPU
The number of cores on graphical computing units (GPUs) is reaching thousands nowadays, whereas the clock speed of processors stagnates. Unfortunately, constraint programming solvers do not take advantage yet of GPU parallelism. One reason is that constraint solvers were primarily designed within th...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
18.07.2022
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The number of cores on graphical computing units (GPUs) is reaching thousands nowadays, whereas the clock speed of processors stagnates. Unfortunately, constraint programming solvers do not take advantage yet of GPU parallelism. One reason is that constraint solvers were primarily designed within the mental frame of sequential computation. To solve this issue, we take a step back and contribute to a simple, intrinsically parallel, lock-free and formally correct programming language based on concurrent constraint programming. We then re-examine parallel constraint solving on GPUs within this formalism, and develop Turbo, a simple constraint solver entirely programmed on GPUs. Turbo validates the correctness of our approach and compares positively to a parallel CPU-based solver. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2207.12116 |