Longest Gapped Repeats and Palindromes

A gapped repeat (respectively, palindrome) occurring in a word \(w\) is a factor \(uvu\) (respectively, \(u^Rvu\)) of \(w\). In such a repeat (palindrome) \(u\) is called the arm of the repeat (respectively, palindrome), while \(v\) is called the gap. We show how to compute efficiently, for every po...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Dumitran, Marius, Gawrychowski, Paweł, Manea, Florin
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 11.10.2017
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A gapped repeat (respectively, palindrome) occurring in a word \(w\) is a factor \(uvu\) (respectively, \(u^Rvu\)) of \(w\). In such a repeat (palindrome) \(u\) is called the arm of the repeat (respectively, palindrome), while \(v\) is called the gap. We show how to compute efficiently, for every position \(i\) of the word \(w\), the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position \(i\) we compute the longest prefix \(u\) of \(w[i..n]\) such that \(uv\) (respectively, \(u^Rv\)) is a suffix of \(w[1..i-1]\) (defining thus a gapped repeat \(uvu\) -- respectively, palindrome \(u^Rvu\)), and the length of \(v\) is subject to the aforementioned restrictions.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1511.07180