Different approaches to community detection

A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they emplo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Rosvall, Martin, Jean-Charles Delvenne, Schaub, Michael T, Lambiotte, Renaud
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 18.12.2017
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different approaches to community detection also delineates the many lines of research and points out open directions and avenues for future research.
AbstractList A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different approaches to community detection also delineates the many lines of research and points out open directions and avenues for future research.
Author Lambiotte, Renaud
Jean-Charles Delvenne
Schaub, Michael T
Rosvall, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Rosvall
  fullname: Rosvall, Martin
– sequence: 2
  fullname: Jean-Charles Delvenne
– sequence: 3
  givenname: Michael
  surname: Schaub
  middlename: T
  fullname: Schaub, Michael T
– sequence: 4
  givenname: Renaud
  surname: Lambiotte
  fullname: Lambiotte, Renaud
BookMark eNotj81Kw0AURgdRsNY-gLuAS0m8d35vllKtCgU33ZdkcgdT7ExNJqJvb0BX3-6c812J85giC3GDUGkyBu6b4bv_qtChrMBqS2diIZXCkrSUl2I1jgcAkNZJY9RC3D32IfDAMRfN6TSkxr_zWORU-HQ8TrHPP0XHmX3uU7wWF6H5GHn1v0ux2zzt1i_l9u35df2wLRsjsVTUogvecg2akAi9IRews0SMYCgEFzqJtao5eC8DtKRYGqU7gGB0q5bi9g8753xOPOb9IU1DnI17Cc7OX5xD9QtTWES7
ContentType Paper
Copyright 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1712.06468
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-38b17fc6e90481881c587f1d688e1058ff7fd21939efcc2f0b83e2534d00f54b3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:50:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-38b17fc6e90481881c587f1d688e1058ff7fd21939efcc2f0b83e2534d00f54b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2076331771?pq-origsite=%requestingapplication%
PQID 2076331771
PQPubID 2050157
ParticipantIDs proquest_journals_2076331771
PublicationCentury 2000
PublicationDate 20171218
PublicationDateYYYYMMDD 2017-12-18
PublicationDate_xml – month: 12
  year: 2017
  text: 20171218
  day: 18
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6417379
SecondaryResourceType preprint
Snippet A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Communities
Mathematical analysis
Title Different approaches to community detection
URI https://www.proquest.com/docview/2076331771
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9a9uA1unltZk-C0qKgZdEe6qk0L-ilrbtr0X9vkm71IHjxFEIuGSb5ZvJlHghdEie8Zy845oJZzI10GIAbbKkBkWqmmYyJwo9yMIDRKC8awq1qwirXmBiB2sx14MgDE5Ixb-wkuVm84dA1KvyuNi00NlE7VEkgMXTv5ZtjoZn0HjNbfWbG0l3Xk_JjurwiMlCAGc_gFwRHu9Lf_e-O9lC7mCxsuY827OwAbcd4Tl0dIg9lq8YndbKuGm6rpJ4nepUQUn8mxtYxDGt2hIb93vDuHjd9EfDEG1vMQBHpdGbzUOsFgGgB0hGTAVjvLYFz0hkPRCy3TmvqUgXMUsG4SVMnuGLHqDWbz-wJSqh__4nUKJA5cKq0UsoYryvmb2nqh1PUWYs-bs52Nf6R--zv5XO0Q4MRJBQT6KBWXb7bC7Sll_W0KruofdsbFM_dqDI_Kx6eitcv2fafxg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BC4KJt3gUyACjIbaT2BkQA1C1aqkq0aFb1fghdUlLEgr9UfxHbKeBAYmtA5MHS5Z1d_7ufE-AK6xDY9mHAQpCqlAgmUacBxIpInnoCyooc4XCXdbr8eEw7q_BZ1ULY9MqK0x0QC2nwvrIrSckokbZMXw_e0V2apSNrlYjNEqx6KjFu_my5XftR8Pfa0KaT4OHFlpOFUBjo6oQ5QlmWkQqtp1SOMci5ExjGXGujK3BtWZammdMY6WFINpPOFUkpIH0fR0GCTXHrkPdWBEkdpmCL98uHRIxY6DTMnbqOoXdjrOPyfwGM-txjIKI_0J8p8aaO_-MALtQ749nKtuDNZXuw6bLVhX5ARigLse6FF7VE13lXjH1RFnuUiw8qQqXZJYewmAV1zuCWjpN1TF4xPxuQ18mnMU8IIlIkkRKI4nUYJBvlhNoVJQeLV9uPvoh8-nf25ew1Ro8d0fddq9zBtvEqntMEOYNqBXZmzqHDTEvJnl24aTEg9GKmfIFn7X21w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+approaches+to+community+detection&rft.jtitle=arXiv.org&rft.au=Rosvall%2C+Martin&rft.au=Jean-Charles+Delvenne&rft.au=Schaub%2C+Michael+T&rft.au=Lambiotte%2C+Renaud&rft.date=2017-12-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1712.06468