Online Class Cover Problem

In this paper, we study the online class cover problem where a (finite or infinite) family \(\cal F\) of geometric objects and a set \({\cal P}_r\) of red points in \(\mathbb{R}^d\) are given a prior, and blue points from \(\mathbb{R}^d\) arrives one after another. Upon the arrival of a blue point,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: De, Minati, Maheshwari, Anil, Mandal, Ratnadip
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 03.07.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the online class cover problem where a (finite or infinite) family \(\cal F\) of geometric objects and a set \({\cal P}_r\) of red points in \(\mathbb{R}^d\) are given a prior, and blue points from \(\mathbb{R}^d\) arrives one after another. Upon the arrival of a blue point, the online algorithm must make an irreversible decision to cover it with objects from \(\cal F\) that do not cover any points of \({\cal P}_r\). The objective of the problem is to place a minimum number of objects. When \(\cal F\) consists of axis-parallel unit squares in \(\mathbb{R}^2\), we prove that the competitive ratio of any deterministic online algorithm is \(\Omega(\log |{\cal P}_r|)\), and also propose an \(O(\log |{\cal P}_r|)\)-competitive deterministic algorithm for the problem.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2308.07020