Online Class Cover Problem

In this paper, we study the online class cover problem where a (finite or infinite) family \(\cal F\) of geometric objects and a set \({\cal P}_r\) of red points in \(\mathbb{R}^d\) are given a prior, and blue points from \(\mathbb{R}^d\) arrives one after another. Upon the arrival of a blue point,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: De, Minati, Maheshwari, Anil, Mandal, Ratnadip
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 03.07.2024
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the online class cover problem where a (finite or infinite) family \(\cal F\) of geometric objects and a set \({\cal P}_r\) of red points in \(\mathbb{R}^d\) are given a prior, and blue points from \(\mathbb{R}^d\) arrives one after another. Upon the arrival of a blue point, the online algorithm must make an irreversible decision to cover it with objects from \(\cal F\) that do not cover any points of \({\cal P}_r\). The objective of the problem is to place a minimum number of objects. When \(\cal F\) consists of axis-parallel unit squares in \(\mathbb{R}^2\), we prove that the competitive ratio of any deterministic online algorithm is \(\Omega(\log |{\cal P}_r|)\), and also propose an \(O(\log |{\cal P}_r|)\)-competitive deterministic algorithm for the problem.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2308.07020