Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware

This article introduces a novel middleware that utilizes cost-effective, low-power computing devices like Raspberry Pi to analyze data from wireless sensor networks (WSNs). It is designed for indoor settings like historical buildings and museums, tracking visitors and identifying points of interest....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Gazis, Alexandros, Katsiri, Eleftheria
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 04.06.2024
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article introduces a novel middleware that utilizes cost-effective, low-power computing devices like Raspberry Pi to analyze data from wireless sensor networks (WSNs). It is designed for indoor settings like historical buildings and museums, tracking visitors and identifying points of interest. It serves as an evacuation aid by monitoring occupancy and gauging the popularity of specific areas, subjects, or art exhibitions. The middleware employs a basic form of the MapReduce algorithm to gather WSN data and distribute it across available computer nodes. Data collected by RFID sensors on visitor badges is stored on mini-computers placed in exhibition rooms and then transmitted to a remote database after a preset time frame. Utilizing MapReduce for data analysis and a leader election algorithm for fault tolerance, this middleware showcases its viability through metrics, demonstrating applications like swift prototyping and accurate validation of findings. Despite using simpler hardware, its performance matches resource-intensive methods involving audiovisual and AI techniques. This design's innovation lies in its fault-tolerant, distributed setup using budget-friendly, low-power devices rather than resource-heavy hardware or methods. Successfully tested at a historical building in Greece (M. Hatzidakis' residence), it is tailored for indoor spaces. This paper compares its algorithmic application layer with other implementations, highlighting its technical strengths and advantages. Particularly relevant in the wake of the COVID-19 pandemic and general monitoring middleware for indoor locations, this middleware holds promise in tracking visitor counts and overall building occupancy.
AbstractList This article introduces a novel middleware that utilizes cost-effective, low-power computing devices like Raspberry Pi to analyze data from wireless sensor networks (WSNs). It is designed for indoor settings like historical buildings and museums, tracking visitors and identifying points of interest. It serves as an evacuation aid by monitoring occupancy and gauging the popularity of specific areas, subjects, or art exhibitions. The middleware employs a basic form of the MapReduce algorithm to gather WSN data and distribute it across available computer nodes. Data collected by RFID sensors on visitor badges is stored on mini-computers placed in exhibition rooms and then transmitted to a remote database after a preset time frame. Utilizing MapReduce for data analysis and a leader election algorithm for fault tolerance, this middleware showcases its viability through metrics, demonstrating applications like swift prototyping and accurate validation of findings. Despite using simpler hardware, its performance matches resource-intensive methods involving audiovisual and AI techniques. This design's innovation lies in its fault-tolerant, distributed setup using budget-friendly, low-power devices rather than resource-heavy hardware or methods. Successfully tested at a historical building in Greece (M. Hatzidakis' residence), it is tailored for indoor spaces. This paper compares its algorithmic application layer with other implementations, highlighting its technical strengths and advantages. Particularly relevant in the wake of the COVID-19 pandemic and general monitoring middleware for indoor locations, this middleware holds promise in tracking visitor counts and overall building occupancy.
Author Gazis, Alexandros
Katsiri, Eleftheria
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Gazis
  fullname: Gazis, Alexandros
– sequence: 2
  givenname: Eleftheria
  surname: Katsiri
  fullname: Katsiri, Eleftheria
BookMark eNotjU9LwzAchoMoOOc-gLeA59b8bZKjFHXFDQ_2PtL215nRJTNNrR_fiZ5eeB543ht06YMHhO4oyYWWkjzY-O2-ciaIygkhQl6gBeOcZlowdo1W43g4Y1YoJiVfoNf3FMEeB-cBVz7BMLg9-ITLGOYOb4N3KUTn93h26QNXocblEKYOl-F4mtKv2LquG2C2EW7RVW-HEVb_u0T181NdrrPN20tVPm4yKxnNKNGEmlZJ3mhoWc84sZS2lsu2KwTwzlhJtGxYa6QyBeWN6IEyrcCopi8MX6L7v-wphs8JxrQ7hCn68-OOEyV0IZim_AcK9U_3
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2407.00045
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a521-108019c753b8ec2f230a11ca35cd64e3d9a5085b2c9579613b4fe1287e97bf693
IEDL.DBID M7S
IngestDate Mon Jun 30 09:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a521-108019c753b8ec2f230a11ca35cd64e3d9a5085b2c9579613b4fe1287e97bf693
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/3074864281?pq-origsite=%requestingapplication%
PQID 3074864281
PQPubID 2050157
ParticipantIDs proquest_journals_3074864281
PublicationCentury 2000
PublicationDate 20240604
PublicationDateYYYYMMDD 2024-06-04
PublicationDate_xml – month: 06
  year: 2024
  text: 20240604
  day: 04
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8721032
SecondaryResourceType preprint
Snippet This article introduces a novel middleware that utilizes cost-effective, low-power computing devices like Raspberry Pi to analyze data from wireless sensor...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Art exhibits
Cloud computing
Cost analysis
Crowd monitoring
Data analysis
Effectiveness
Exhibitions
Fault tolerance
Hardware
Historical buildings
Middleware
Minicomputers
Museums
Power management
Prototyping
Tracking
Wireless sensor networks
Title Streamline Intelligent Crowd Monitoring with IoT Cloud Computing Middleware
URI https://www.proquest.com/docview/3074864281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60VfDkGx-15OA1tpvNPnISLC0WaVm0h3oqeUJBu3W3rf58k3RbD4IXL4EllyWZzHzzzccMwC0xscW9LMGUM4opkwQzo6hdnH1QEbFI-GETyXCYjscsqwi3spJVbnyid9Qql44jb1lbpKkDy8H9_AO7qVGuulqN0NiFuuuSEHjp3suWYyFxYhFzuC5m-tZdLV58TVd3Lo3xfTqjXy7Yx5Xe4X__6AjqGZ_r4hh29OwE9r2eU5an8OSqzfzdYUjU33bdXKCOzboVWj9kx-ghx8Oifj5Cnbd8qdB6yIPbGHjm4pMX-gxGve6o84iruQmY22CMnWowYNLmISLVkhibZPAgkDyMpIqpDhXjFpVFgkhXorPhXFCjbZhKNEuEiVl4DrVZPtMXgESbK4sHGG9LRiMlWGpCkhoZSRoKTeUlNDZHM6lsv5z8nMvV39vXcEAsRPDCK9qA2qJY6hvYk6vFtCyaUH_oDrPnpr9S-5X1B9nrNxuYq7I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEF1FCQgqbnEE2AJKk2S9PrZAFIEoVg6lcBEqay9LSBAHOwd8FP_IrB2HAokuBc0226w9z2_ezoxnELohsQu6l3kW5YxalElisVhRWAw-qHCYI_JhE95w6I_HbFRBX-W_MKassuTEnKhVIk2MvAFYpL4Ry62H6btlpkaZ7Go5QqOARU9_LuHKlt0Hj2DfW0I6T2G7a62mClgcXJVlaupaTIJKF76WJAYJzlstyW1HKpdqWzEOmsURRJoEFjg7QWMNJO5p5onYNb2XgPFrFLDerKLaKBiMntdBHeJ6INHtInua9wpr8PTjZXFn7k15Y1DnF-fnjqyz989ewT48Op_q9ABV9OQQbef1qjI7Qj2TTedvRiPjYN1VdIbbabJUuCAqE7HEJs6MgyTE7ddkrnAxxMJsDPLIzJKn-hiFmzj-CapOkok-RVg0uQK9w3hTMuoowfzYJn4sHUltoak8Q_XSEtHq286iHzOc_719jXa64aAf9YNh7wLtEpBDeZEZraPqLJ3rS7QlF7OXLL1a4QijaMNm-wYRFAN1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streamline+Intelligent+Crowd+Monitoring+with+IoT+Cloud+Computing+Middleware&rft.jtitle=arXiv.org&rft.au=Gazis%2C+Alexandros&rft.au=Katsiri%2C+Eleftheria&rft.date=2024-06-04&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2407.00045