Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design
This study compares the performances of four state-of-the-art evolutionary multi-objective optimization (EMO) algorithms: the Non-Dominated Sorted Genetic Algorithm II (NSGAII), the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II ( ε-NSGAII), the Epsilon-Dominance Multi-Objective Evoluti...
Uloženo v:
| Vydáno v: | Advances in water resources Ročník 29; číslo 6; s. 792 - 807 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.06.2006
Elsevier Science |
| Témata: | |
| ISSN: | 0309-1708, 1872-9657 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study compares the performances of four state-of-the-art evolutionary multi-objective optimization (EMO) algorithms: the Non-Dominated Sorted Genetic Algorithm II (NSGAII), the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (
ε-NSGAII), the Epsilon-Dominance Multi-Objective Evolutionary Algorithm (
εMOEA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2), on a four-objective long-term groundwater monitoring (LTM) design test case. The LTM test case objectives include: (i) minimize sampling cost, (ii) minimize contaminant concentration estimation error, (iii) minimize contaminant concentration estimation uncertainty, and (iv) minimize contaminant mass estimation error. The 25-well LTM design problem was enumerated to provide the true Pareto-optimal solution set to facilitate rigorous testing of the EMO algorithms. The performances of the four algorithms are assessed and compared using three runtime performance metrics (convergence, diversity, and
ε-performance), two unary metrics (the hypervolume indicator and unary
ε-indicator) and the first-order empirical attainment function. Results of the analyses indicate that the
ε-NSGAII greatly exceeds the performance of the NSGAII and the
εMOEA. The
ε-NSGAII also achieves superior performance relative to the SPEA2 in terms of search effectiveness and efficiency. In addition, the
ε-NSGAII’s simplified parameterization and its ability to adaptively size its population and automatically terminate results in an algorithm which is efficient, reliable, and easy-to-use for water resources applications. |
|---|---|
| Bibliografie: | http://dx.doi.org/10.1016/j.advwatres.2005.07.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0309-1708 1872-9657 |
| DOI: | 10.1016/j.advwatres.2005.07.010 |