Discontinuous Galerkin method for linear wave equations involving derivatives of the Dirac delta distribution

Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to \(\partial^n \delta /\partial x^n\...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Field, Scott E, Gottlieb, Sigal, Khanna, Gaurav, McClain, Ed
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 30.06.2023
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to \(\partial^n \delta /\partial x^n\). Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to \(\delta(x)\). Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions.
AbstractList Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to \(\partial^n \delta /\partial x^n\). Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to \(\delta(x)\). Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions.
Author Field, Scott E
Khanna, Gaurav
Gottlieb, Sigal
McClain, Ed
Author_xml – sequence: 1
  givenname: Scott
  surname: Field
  middlename: E
  fullname: Field, Scott E
– sequence: 2
  givenname: Sigal
  surname: Gottlieb
  fullname: Gottlieb, Sigal
– sequence: 3
  givenname: Gaurav
  surname: Khanna
  fullname: Khanna, Gaurav
– sequence: 4
  givenname: Ed
  surname: McClain
  fullname: McClain, Ed
BookMark eNotjctOwzAURC0EEqX0A9hZYp1g-8Z5LFELBakSm-6rm-SauqQ2tZ3A51MEq5HmaM7csEvnHTF2J0Ve1FqLBwzfdsqVkjKXBTTigs0UgMzqQqlrtojxIIRQZaW0hhk7rmzsvEvWjX6MfI0DhQ_r-JHS3vfc-MAH6wgD_8KJOJ1GTNa7yK2b_DBZ9857CnY6txNF7g1Pe-IrG7A7gyEh721Mwbbj7-yWXRkcIi3-c862z0_b5Uu2eVu_Lh83GWolMsK6KI0EaZAabboKtQRqoFMVaGiVlhV0TdMRVUIiQg_U16iK3rRYQ1nCnN3_aT-DP40U0-7gx-DOjztVFVKCkELAD3lxXnk
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2211.14390
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-ea846f131fae95fc7a513e93c27353b25173c99cee701aa3d3ed8a24dfba83663
IEDL.DBID M7S
IngestDate Mon Jun 30 09:17:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-ea846f131fae95fc7a513e93c27353b25173c99cee701aa3d3ed8a24dfba83663
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2741130100?pq-origsite=%requestingapplication%
PQID 2741130100
PQPubID 2050157
ParticipantIDs proquest_journals_2741130100
PublicationCentury 2000
PublicationDate 20230630
PublicationDateYYYYMMDD 2023-06-30
PublicationDate_xml – month: 06
  year: 2023
  text: 20230630
  day: 30
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8363771
SecondaryResourceType preprint
Snippet Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Exact solutions
Galerkin method
Wave equations
Title Discontinuous Galerkin method for linear wave equations involving derivatives of the Dirac delta distribution
URI https://www.proquest.com/docview/2741130100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToNAFJ1oq4kr3_FRm1m4xQIzCLMyUVs10YZoF3XVzOOSkChtoUU_3ztAdWHixhUhw4IMw7nnPnIOIee-QNCDMLQdxsDh3HBHcYXJCo98HYZCclWJuD6Gw2E0Hou4KbgVzVjlChMroDZTbWvkPSuzgnjrue7VbO5Y1yjbXW0sNNZJ26okeNXo3st3jcW_DJExs7qZWUl39WT-mZYXPqY9iBFMuL8guIorg-3_vtEOacdyBvkuWYNsj2xW85y62Cfvt2lhp9DTbImpPb3DMGCL4rQ2jKbIVKnllzKnH7IECvNa8bugaYZ4ZYsM1ODZLCtZ8IJOE4pEkSI-So0LbwtJjVXcbcyyDsho0B_d3DuNs4IjA0wXQSLrSDzmJRJEkOhQBh4DwTRymYApq2LGtBAYP0PXk5IZBiaSPjeJkhFDjnJIWtk0gyNCAxWYBHyODwFXBhQCAAi8-mA0h-iYdFabN2n-jmLys3Mnfy-fki1r717P53VIa5Ev4Yxs6HKRFnmXtK_7w_i5W310vIsfnuLXL4TAup4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V05T8MwFH7iFEzc4sYDjIHGdkg8IAauVpQKiQ5slWO_SJEgbZMe8KP4jzwnLQxIbAxMGRxFSp79vTPfB3DMFYEehqHrMAaelFZ6sYwpWZERN2GotIxLEtdm2GpFz8_qcQY-pv_CuLHKKSaWQG27xtXIzxzNCuGtX6td9vqeU41y3dWphEa1Le7xfUwpW3HRuCb7nnB-e9O-qnsTVQFPB5QqoSaPm_jCTzSqIDGhDnyBShjy44GIHYOXMEqR7whrvtbCCrSR5tImsY4E-Wd67CzMUxTBVTkp-PRV0uHnIQXoouqdlkxhZzp_S0ennLIsgiShaj8Qv3Rjtyv_7AOswvyj7mG-BjOYrcNiOa1qig14vU4LN2OfZsPusGB35ORcyZ9VctiM4nDmomeds7EeIcN-xWdesDQjNHYlFGbp5I1K0vOCdRNGYTAj9NeGFl4GmlnHJzyRAtuE9l-84BbMZd0Mt4EFcWAT5JJuQhlbjAneUNGVozUSox3Yn9qqMzn7RefbULu_Lx_BUr390Ow0G637PVh2QvbVJOI-zA3yIR7AghkN0iI_LPcZg84fm_UTBrkTsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discontinuous+Galerkin+method+for+linear+wave+equations+involving+derivatives+of+the+Dirac+delta+distribution&rft.jtitle=arXiv.org&rft.au=Field%2C+Scott+E&rft.au=Gottlieb%2C+Sigal&rft.au=Khanna%2C+Gaurav&rft.au=McClain%2C+Ed&rft.date=2023-06-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2211.14390