Discontinuous Galerkin method for linear wave equations involving derivatives of the Dirac delta distribution
Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to \(\partial^n \delta /\partial x^n\...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
30.06.2023
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to \(\partial^n \delta /\partial x^n\). Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to \(\delta(x)\). Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions. |
|---|---|
| AbstractList | Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to \(\partial^n \delta /\partial x^n\). Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to \(\delta(x)\). Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions. |
| Author | Field, Scott E Khanna, Gaurav Gottlieb, Sigal McClain, Ed |
| Author_xml | – sequence: 1 givenname: Scott surname: Field middlename: E fullname: Field, Scott E – sequence: 2 givenname: Sigal surname: Gottlieb fullname: Gottlieb, Sigal – sequence: 3 givenname: Gaurav surname: Khanna fullname: Khanna, Gaurav – sequence: 4 givenname: Ed surname: McClain fullname: McClain, Ed |
| BookMark | eNotjctOwzAURC0EEqX0A9hZYp1g-8Z5LFELBakSm-6rm-SauqQ2tZ3A51MEq5HmaM7csEvnHTF2J0Ve1FqLBwzfdsqVkjKXBTTigs0UgMzqQqlrtojxIIRQZaW0hhk7rmzsvEvWjX6MfI0DhQ_r-JHS3vfc-MAH6wgD_8KJOJ1GTNa7yK2b_DBZ9857CnY6txNF7g1Pe-IrG7A7gyEh721Mwbbj7-yWXRkcIi3-c862z0_b5Uu2eVu_Lh83GWolMsK6KI0EaZAabboKtQRqoFMVaGiVlhV0TdMRVUIiQg_U16iK3rRYQ1nCnN3_aT-DP40U0-7gx-DOjztVFVKCkELAD3lxXnk |
| ContentType | Paper |
| Copyright | 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2211.14390 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-ea846f131fae95fc7a513e93c27353b25173c99cee701aa3d3ed8a24dfba83663 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:17:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-ea846f131fae95fc7a513e93c27353b25173c99cee701aa3d3ed8a24dfba83663 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2741130100?pq-origsite=%requestingapplication% |
| PQID | 2741130100 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2741130100 |
| PublicationCentury | 2000 |
| PublicationDate | 20230630 |
| PublicationDateYYYYMMDD | 2023-06-30 |
| PublicationDate_xml | – month: 06 year: 2023 text: 20230630 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2023 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8363771 |
| SecondaryResourceType | preprint |
| Snippet | Linear wave equations sourced by a Dirac delta distribution \(\delta(x)\) and its derivative(s) can serve as a model for many different phenomena. We describe... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Exact solutions Galerkin method Wave equations |
| Title | Discontinuous Galerkin method for linear wave equations involving derivatives of the Dirac delta distribution |
| URI | https://www.proquest.com/docview/2741130100 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20VfDkN37UsgevsUk3MdmToNYP0BK0SD2Vye4GApq2SRv9-c5uUz0IXjyGvYTN5s17s8N7AKfGlCi1SpW0FwkUnjikbJVDtVimAZ0gz7rzvzyE_X40HIq4briV9VjlEhMtUKuxND3yjrFZIbz1XPdiMnVMapS5Xa0jNFahaVwSPDu69_zdY-meh8SY-eIy01p3dbD4zKoz8wqEEVy4vyDY1pWbzf--0RY0Y5zoYhtWdL4D63aeU5a78H6dlWYKPcvnJO3ZLZUB0xRni8BoRkyVGX6JBfvASjM9XTh-lyzLCa9Mk4EpOpuVtQUv2ThlRBQZ4SNKWnibIVPGcbcOy9qDwU1vcHXn1MkKDgYkFzUS60g97qWoRZDKEAOPa8ElcZmAJ8bFjEshqH6GrofIFdcqwq6v0gQjThxlHxr5ONcHwHyJSTfhCpNE-L6QqIyfvK-V77sycvkhtJabN6r_jnL0s3NHfy8fw4aJd1_M57WgMSvm-gTWZDXLyqINzcteP35q249OT_H9Y_z6BQ3xuSs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BAcHEW7zxAGNoEiekHhADb7VUlagQW3WxHSkSpG3SB_wo_iNnp4UBia0Ds6VI9p2_7-58-Q7gxIgSJTZTpdyLEhQeO5TZKoe4WCYheZBn1fmfG1GzWXt5Ea05-Jz-C2PaKqeYaIFadaWpkVeNzArhree6l72-Y6ZGmdfV6QiN0i3q-mNMKVtx8XBN9j31_dub9tW9M5kq4GBIqZJGYtzE416CWoSJjDD0uBZcEo-HPDYKXlwKQdwRuR4iV1yrGvqBSmKsceJn-uw8LFAU4QvbKfj0XdLxzyMK0Hn5dmqVwqqYv6ejM7NjgiQu3F-Ib2nsdvWfHcAaLLSwp_N1mNPZBizZblVZbMLbdVqYHvs0G3aHBbsjkjMlf1aOw2YUhzMTPWPOxjjSTPdLPfOCpRmhsSmhMEU3b2RFzwvWTRiFwYzQHyUtvA6QKaMnPBkFtgXtWWxwGypZN9M7wAKJsR9zhXEsgkBIVEYtP9AqCFxZc_kuHExt1Znc_aLzY6i9v5ePYfm-_djoNB6a9X1YMYPsy07EA6gM8qE-hEU5GqRFfmT9jEFnxmb9AqyEEj0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discontinuous+Galerkin+method+for+linear+wave+equations+involving+derivatives+of+the+Dirac+delta+distribution&rft.jtitle=arXiv.org&rft.au=Field%2C+Scott+E&rft.au=Gottlieb%2C+Sigal&rft.au=Khanna%2C+Gaurav&rft.au=McClain%2C+Ed&rft.date=2023-06-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2211.14390 |