Complexity of 2D bootstrap percolation difficulty: Algorithm and NP-hardness

Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probabi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Hartarsky, Ivailo, Tamás Róbert Mezei
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 30.11.2019
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probability -- was determined by Bollobás, Duminil-Copin, Morris and Smith in terms of a simply defined combinatorial quantity called `difficulty', so the subject seemed closed up to finding sharper results. However, the computation of the difficulty, was never considered. In this paper we provide the first algorithm to determine this quantity, which is, surprisingly, not as easy as the definition leads to thinking. The proof also provides some explicit upper bounds, which are of use for bootstrap percolation. On the other hand, we also prove the negative result that computing the difficulty of a critical model is NP-hard. This two-dimensional picture contrasts with an upcoming result of Balister, Bollobás, Morris and Smith on uncomputability in higher dimensions. The proof of NP-hardness is achieved by a technical reduction to the Set Cover problem.
AbstractList Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probability -- was determined by Bollobás, Duminil-Copin, Morris and Smith in terms of a simply defined combinatorial quantity called `difficulty', so the subject seemed closed up to finding sharper results. However, the computation of the difficulty, was never considered. In this paper we provide the first algorithm to determine this quantity, which is, surprisingly, not as easy as the definition leads to thinking. The proof also provides some explicit upper bounds, which are of use for bootstrap percolation. On the other hand, we also prove the negative result that computing the difficulty of a critical model is NP-hard. This two-dimensional picture contrasts with an upcoming result of Balister, Bollobás, Morris and Smith on uncomputability in higher dimensions. The proof of NP-hardness is achieved by a technical reduction to the Set Cover problem.
Author Hartarsky, Ivailo
Tamás Róbert Mezei
Author_xml – sequence: 1
  givenname: Ivailo
  surname: Hartarsky
  fullname: Hartarsky, Ivailo
– sequence: 2
  fullname: Tamás Róbert Mezei
BookMark eNotjT1PwzAUAC0EEqX0B7BZYk54_niJw1YVCkgRMHSvnOSFpkrjYDuo_fdUgumW090NuxzcQIzdCUi1QYQH64_dTyoMFCkIlHjBZlIpkRgt5TVbhLAHAJnlElHNWLlyh7GnYxdP3LVcPvHKuRiityMfydeut7FzA2-6tu3qqY-nR77sv5zv4u7A7dDw989kZ30zUAi37Kq1faDFP-dss37erF6T8uPlbbUsE4sSkiKvLWWkFQKBAcylQdHmZMDoWqtM5WAaZRthEYsKC6gzIg1EBYColFVzdv-XHb37nijE7d5Nfjgft1KcHQG5AfULQlRP6A
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1809.01525
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-97cae6e4350e080572851f7e8084c4363708d3ad1a559b590c6ee40ee9001b3a3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:25:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-97cae6e4350e080572851f7e8084c4363708d3ad1a559b590c6ee40ee9001b3a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2100110780?pq-origsite=%requestingapplication%
PQID 2100110780
PQPubID 2050157
ParticipantIDs proquest_journals_2100110780
PublicationCentury 2000
PublicationDate 20191130
PublicationDateYYYYMMDD 2019-11-30
PublicationDate_xml – month: 11
  year: 2019
  text: 20191130
  day: 30
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7066761
SecondaryResourceType preprint
Snippet Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Cellular automata
Combinatorial analysis
Percolation
Two dimensional models
Upper bounds
Title Complexity of 2D bootstrap percolation difficulty: Algorithm and NP-hardness
URI https://www.proquest.com/docview/2100110780
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8MgFCe6aeLJ7_gxDQev3dpCKXgxfmzRZDaN7jBPC6WvukS72dbF_fcC6_Rg4sUjgTTAK48fj8fvh9CZJIGXUo86GTdPclTGnIRy5lDIZMoTvcNJS5nfD6OID4cirgNuZZ1WufSJ1lGnE2Vi5B3fs_RmIXcvpu-OUY0yt6u1hMYqahqWBM-m7j1-x1h8FmrETBaXmZa6qyOLz_GsbUir2q6R_vnlgu2-0tv8b4-2UDOWUyi20QrkO2jd5nOqchf1zTo3XJfVHE8y7N9gjaYrE9aYYt1eW99aBBt9FMu-MT_Hl6_P-vPVyxuWeYqj2DEPsown3EODXndwfevUwgmODPRpUIRKAgMNhFzQgDAIfQ2rshC4y6mihJHQ5SmRqSf1cSIJhKsYAHUBhB5QQiTZR418ksMBwq7HOVMiAS4yKiSTlPoZI8AMSw6I5BC1lnMzqn_-cvQzMUd_Vx-jDY0_xIJJsYUaVfEBJ2hNzapxWZyi5lU3ih9OrU11Kb67j5--AFQ1q1Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHSh_LdtfEGOMjEJCQyMEb2bZTJVFAqCg_yv_o7AJ6MPHGwXObvmY6-83szPcBHOug7CXc404qzUhOnAon4lI4HFOdyIhWOG0p8-thoyEfHlQzB5-zWRjTVjmLiTZQJ73Y1MhLvmfpzULpXvRfHaMaZXZXZxIaE7eo4fidUrbhefWa7Hvi-7c3rauKM1UVcHSZUiUVxhoFEkpwkdBSOfQJc6QhSlfymAciCF2ZBDrxNGHtqKzcWCByF1HR_aNAB3TZBSgQivCV7RS8_y7p-CIkgB5M9k4tU1hJDz46o1PDkXXqGqWhXxHfLmO3q__sA6xBoan7OFiHHHY3YMl2q8bDTaibKGaYPLMx66XMv2aUK2SmaNNndD75tvU3ZtRfLLfI-IxdPj_S22RPL0x3E9ZoOmbczMT5LWjN4_m3Id_tdXEHmOtJKWIVoVQpV1pozv1UBCgMBxCqaBeKM1O0p7_2sP1jh72_Dx_BcqV1V2_Xq43aPqwQ0lITzsgi5LPBGx7AYjzKOsPBoXUjBu05W-0LPjMBAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+2D+bootstrap+percolation+difficulty%3A+Algorithm+and+NP-hardness&rft.jtitle=arXiv.org&rft.au=Hartarsky%2C+Ivailo&rft.au=Tam%C3%A1s+R%C3%B3bert+Mezei&rft.date=2019-11-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1809.01525