Complexity of 2D bootstrap percolation difficulty: Algorithm and NP-hardness
Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probabi...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
30.11.2019
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probability -- was determined by Bollobás, Duminil-Copin, Morris and Smith in terms of a simply defined combinatorial quantity called `difficulty', so the subject seemed closed up to finding sharper results. However, the computation of the difficulty, was never considered. In this paper we provide the first algorithm to determine this quantity, which is, surprisingly, not as easy as the definition leads to thinking. The proof also provides some explicit upper bounds, which are of use for bootstrap percolation. On the other hand, we also prove the negative result that computing the difficulty of a critical model is NP-hard. This two-dimensional picture contrasts with an upcoming result of Balister, Bollobás, Morris and Smith on uncomputability in higher dimensions. The proof of NP-hardness is achieved by a technical reduction to the Set Cover problem. |
|---|---|
| AbstractList | Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probability -- was determined by Bollobás, Duminil-Copin, Morris and Smith in terms of a simply defined combinatorial quantity called `difficulty', so the subject seemed closed up to finding sharper results. However, the computation of the difficulty, was never considered. In this paper we provide the first algorithm to determine this quantity, which is, surprisingly, not as easy as the definition leads to thinking. The proof also provides some explicit upper bounds, which are of use for bootstrap percolation. On the other hand, we also prove the negative result that computing the difficulty of a critical model is NP-hard. This two-dimensional picture contrasts with an upcoming result of Balister, Bollobás, Morris and Smith on uncomputability in higher dimensions. The proof of NP-hardness is achieved by a technical reduction to the Set Cover problem. |
| Author | Hartarsky, Ivailo Tamás Róbert Mezei |
| Author_xml | – sequence: 1 givenname: Ivailo surname: Hartarsky fullname: Hartarsky, Ivailo – sequence: 2 fullname: Tamás Róbert Mezei |
| BookMark | eNotjT1PwzAUAC0EEqX0B7BZYk54_niJw1YVCkgRMHSvnOSFpkrjYDuo_fdUgumW090NuxzcQIzdCUi1QYQH64_dTyoMFCkIlHjBZlIpkRgt5TVbhLAHAJnlElHNWLlyh7GnYxdP3LVcPvHKuRiityMfydeut7FzA2-6tu3qqY-nR77sv5zv4u7A7dDw989kZ30zUAi37Kq1faDFP-dss37erF6T8uPlbbUsE4sSkiKvLWWkFQKBAcylQdHmZMDoWqtM5WAaZRthEYsKC6gzIg1EBYColFVzdv-XHb37nijE7d5Nfjgft1KcHQG5AfULQlRP6A |
| ContentType | Paper |
| Copyright | 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1809.01525 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database (subscription) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-97cae6e4350e080572851f7e8084c4363708d3ad1a559b590c6ee40ee9001b3a3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:25:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-97cae6e4350e080572851f7e8084c4363708d3ad1a559b590c6ee40ee9001b3a3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2100110780?pq-origsite=%requestingapplication% |
| PQID | 2100110780 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2100110780 |
| PublicationCentury | 2000 |
| PublicationDate | 20191130 |
| PublicationDateYYYYMMDD | 2019-11-30 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191130 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2019 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7066761 |
| SecondaryResourceType | preprint |
| Snippet | Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three rough universality... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Cellular automata Combinatorial analysis Percolation Two dimensional models Upper bounds |
| Title | Complexity of 2D bootstrap percolation difficulty: Algorithm and NP-hardness |
| URI | https://www.proquest.com/docview/2100110780 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmJt3gU5IE1rRsnsc2CeLQCqUQRdChT5dguVIK0JKGi_56zm8KAxMISKUpkJb747rvz5fsQOpOptrRezAukgYPSyhMGFl5KRcghJMrUOHb9HotjPhiIpCq4FVVb5dInOketJ8rWyFt-29GbMU4upu-eVY2yu6uVhMYqqluWhLZr3Xv8rrH4EQPETBebmY66qyXzz_GsaUmrmsRK__xywS6udDf_-0RbqJ7Iqcm30YrJdtC66-dUxS7q2XVuuS7LOZ6MsH-DAU2XtqwxxXA_WN9ZBFt9FMe-MT_Hl6_PMHz58oZlpnGcePaHLOsJ91C_2-lf33qVcIInQ8gGBVPSRAaAEDEACEPmA6waMcMJD1RAI8oI11TqtoR0Ig0FUZExATFGwAulVNJ9VMsmmTlAOI1kewSjaMo4pDYc0ApVviaRhMAmhThEjeXcDKuPvxj-TMzR35eP0QbgD7FgUmygWpl_mBO0pmbluMhPUf2qEycPp86mcJbc3SdPX6ktqzo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHQum23a6JMUYkELAhkQO3ZrtdlEQLQkX5Uf5HZxfQg4k3Dl56abNtd2Znvpmd_QbgXMSJpvVilisUXmQiLa5w4cWUewG6RBErw67fYmEYdLu8nYPPxVkYXVa5sInGUCcDqXPkZadi6M1YYF8PXy3dNUrvri5aaMzUoqmm7xiyja8aVZTvhePU7jq3dWveVcASHoZKnEmhfIUowVaIljzmIOboMRXYgStd6lNmBwkVSUUg1o49bktfKddWiuP7YyooDrsCBUQRDjeVgg_fKR3HZwjQ6Wzv1DCFlcXooz8paY6skq07Df2y-MaN1Tb_2QRsQaEthmq0DTmV7sCaqVaV411oaSummTyzKRn0iFMlGCtkOmkzJPg86rbRN6K7vxhukekluXl-xL_Jnl6ISBMSti193Ezb-T3oLOP79yGfDlJ1ACT2RaWHoySUBRi4BYjFqHQS2xfotgXnh1BciCKaL-1x9COHo79vn8F6vXPfilqNsHkMG4i0-Iwzsgj5bPSmTmBVTrL-eHRq1IhAtGSpfQGzPwDm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+2D+bootstrap+percolation+difficulty%3A+Algorithm+and+NP-hardness&rft.jtitle=arXiv.org&rft.au=Hartarsky%2C+Ivailo&rft.au=Tam%C3%A1s+R%C3%B3bert+Mezei&rft.date=2019-11-30&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1809.01525 |