UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. In...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Dai, Zhigang, Cai, Bolun, Lin, Yugeng, Chen, Junying
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 24.07.2023
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr.
AbstractList DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture. However, trained with scratch transformers, DETR needs large-scale training data and an extreme long training schedule even on COCO dataset. Inspired by the great success of pre-training transformers in natural language processing, we propose a novel pretext task named random query patch detection in Unsupervised Pre-training DETR (UP-DETR). Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the input image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we find that freezing the CNN backbone is the prerequisite for the success of pre-training transformers. (2) To perform multi-query localization, we develop UP-DETR with multi-query patch detection with attention mask. Besides, UP-DETR also provides a unified perspective for fine-tuning object detection and one-shot detection tasks. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr.
Author Chen, Junying
Cai, Bolun
Dai, Zhigang
Lin, Yugeng
Author_xml – sequence: 1
  givenname: Zhigang
  surname: Dai
  fullname: Dai, Zhigang
– sequence: 2
  givenname: Bolun
  surname: Cai
  fullname: Cai, Bolun
– sequence: 3
  givenname: Yugeng
  surname: Lin
  fullname: Lin, Yugeng
– sequence: 4
  givenname: Junying
  surname: Chen
  fullname: Chen, Junying
BookMark eNotjctKw0AUQAdRsNZ-gLsB16l37jwy40760EKhRdJ1mSQ3mqCTOpNWP9-Crs7iwDk37DL0gRi7EzBVVmt48PGnPU0RhJiCA6cu2AilFJlViNdsklIHAGhy1FqO2Gq3zeaL4vWR70I6Hiie2kQ130bKhujb0IY33vSRb8qOqoHPaTij7QP_bod3XkQf0ll_Uky37KrxH4km_xyzYrkoZi_ZevO8mj2tM68RMoteKFP7StoS6oa0qbDJfZXrxiljqDKgnS6htLI23loU5GqhSrJNpVHXcszu_7KH2H8dKQ37rj_GcD7uURlEpx2A_AUNO0-Z
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2011.09094
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-82a146dac38b0dfe56c2f7ac75f9466ec60595b0b83d6a8821e9d14be8fc525d3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:26:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-82a146dac38b0dfe56c2f7ac75f9466ec60595b0b83d6a8821e9d14be8fc525d3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2462295900?pq-origsite=%requestingapplication%
PQID 2462295900
PQPubID 2050157
ParticipantIDs proquest_journals_2462295900
PublicationCentury 2000
PublicationDate 20230724
PublicationDateYYYYMMDD 2023-07-24
PublicationDate_xml – month: 07
  year: 2023
  text: 20230724
  day: 24
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8390161
SecondaryResourceType preprint
Snippet DEtection TRansformer (DETR) for object detection reaches competitive performance compared with Faster R-CNN via a transformer encoder-decoder architecture....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Coders
Encoders-Decoders
Learning
Natural language processing
Object recognition
Patches (structures)
Queries
Training
Transformers
Title UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
URI https://www.proquest.com/docview/2462295900
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwGLSgBYmJt3iUygOr1cRN4pgFCdqKSlCikqIyVX5F6pKWpK34-fgzCUgMLIyRl8iP8_n8-Q6ha06NttReEXu68ohl4AERikrCONeKgyOZE3NeH9loFE-nPKkEt7Iqq6wx0QG1XijQyDs0iCB5mnve7fKdQGoU3K5WERrbqAkuCb4r3Xv51lhoxCxj7n5dZjrrro4oPuabyrmTexBV_AuC3b4y2P_vHx2gZiKWpjhEWyY_QruunlOVx2g4SUivn45v8CQv10sAhNJonBSG1KEQ2NJV_CxBh8E9s3IlWTkGXRanNZu13PAEpYN-ev9AqtQEIkIKz8KFBT8tVDeWns5MGCmaMaFYmIGVvFH2_MJD6cm4qyNh-bVvuPYDaeJMhTTU3VPUyBe5OUMY3KV8KpikXhxIZofbLncWK24iHoeZOUetumNm1cwvZz-9cvF38yXag-h20Elp0EKNVbE2V2hHbVbzsmij5l1_lIzbbkDtVzJ8St4-AR8Uqp4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTsJAFL1B0OjKd3ygzkKXE8r0MR0T40IgEBAbLcYdmc5MEzYFW0D9KP_RmUI1ceGOhesmTdN7e3rmzJ1zAC4ZUVJTe4H16srCmoE7mAsSYcqYFMw4kuViznOP9vv-ywsLSvBZnIUxY5UFJuZALcfCaOQ14ngmeZpZ1u3kFZvUKLO7WkRoLNqiqz7e9JItu-k0dH2vCGk1w7s2XqYKYO4Sc2yaa3CQXNh-ZMlYuZ4gMeWCurGxWldC83vmRlbk29Ljmn_WFZN1J1J-LFziSlvfdg0qmkUQlk8KPn1LOsSjmqDbi73T3CmsxtP30XxpFMosk4z8C_Hz31hr-5-9gB2oBHyi0l0oqWQPNvJpVZHtQ2cQ4EYzfLxGgySbTQzcZUqiIFW4iLxAmoyjh8ioTKihpvnAWYKM6ozCgqtr5nsA4Soe_hDKyThRR4CMd1adcBoRy3ciqptZgxn1BVMe891YHUO1qMNw-V1nw58inPx9-QI22-F9b9jr9LunsGVC6o0iTJwqlKfpTJ3BuphPR1l6nvcQguGKS_YFcCsD2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UP-DETR%3A+Unsupervised+Pre-training+for+Object+Detection+with+Transformers&rft.jtitle=arXiv.org&rft.au=Dai%2C+Zhigang&rft.au=Cai%2C+Bolun&rft.au=Lin%2C+Yugeng&rft.au=Chen%2C+Junying&rft.date=2023-07-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2011.09094