Efficient online quantum state estimation using a matrix-exponentiated gradient method
In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement res...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
07.03.2019
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement results obtained in each step. We show convergence of the running state estimate in probability to the true state for both noiseless and noisy measurements. We find that in the latter case the learning rate has to be chosen adaptively and decreasing to guarantee convergence beyond the noise threshold. As a practical alternative we then propose to use running averages of the measurement statistics and a constant learning rate to overcome the noise problem. The proposed algorithm is numerically compared with batch maximum-likelihood and least-squares estimators. The results show a superior performance of the new algorithm in terms of accuracy and runtime complexity. |
|---|---|
| AbstractList | In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement results obtained in each step. We show convergence of the running state estimate in probability to the true state for both noiseless and noisy measurements. We find that in the latter case the learning rate has to be chosen adaptively and decreasing to guarantee convergence beyond the noise threshold. As a practical alternative we then propose to use running averages of the measurement statistics and a constant learning rate to overcome the noise problem. The proposed algorithm is numerically compared with batch maximum-likelihood and least-squares estimators. The results show a superior performance of the new algorithm in terms of accuracy and runtime complexity. |
| Author | Ferrie, Christopher Tomamichel, Marco Youssry, Akram |
| Author_xml | – sequence: 1 givenname: Akram surname: Youssry fullname: Youssry, Akram – sequence: 2 givenname: Christopher surname: Ferrie fullname: Ferrie, Christopher – sequence: 3 givenname: Marco surname: Tomamichel fullname: Tomamichel, Marco |
| BookMark | eNotjktLAzEUhYMoWGt_gLuA66k3jzuZWUqpDyi4UNyWNI-a0knaSUbm5zuoq8OBw_edG3IZU3SE3DFYygYRHnQ_hu8la0AtgTXIL8iMC8GqRnJ-TRY5HwCA14ojihn5XHsfTHCx0BSPITp6HnQsQ0dz0cVRl0vodAkp0iGHuKeaTrUPY-XG02SOJUwzS_e9tr-UzpWvZG_JldfH7Bb_OSfvT-uP1Uu1eXt-XT1uKo0cKtUqhcZ7jrWwO9Zaz6xXAqV3gJoryZXeNVYYA8o441E4sNgy5iUKbMWc3P9RT306D9PV7SENfZyEWw5KNFLVEsQPxMRVcA |
| ContentType | Paper |
| Copyright | 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.1807.01852 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-79775cff2563db19df1df7354fe05a27427ab8d3cc07cecf53e0d5911f453593 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:17:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-79775cff2563db19df1df7354fe05a27427ab8d3cc07cecf53e0d5911f453593 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2073847640?pq-origsite=%requestingapplication% |
| PQID | 2073847640 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2073847640 |
| PublicationCentury | 2000 |
| PublicationDate | 20190307 |
| PublicationDateYYYYMMDD | 2019-03-07 |
| PublicationDate_xml | – month: 03 year: 2019 text: 20190307 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2019 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.6818428 |
| SecondaryResourceType | preprint |
| Snippet | In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Convergence Learning curves Machine learning Maximum likelihood estimators Noise threshold Quantum theory State estimation Weight |
| Title | Efficient online quantum state estimation using a matrix-exponentiated gradient method |
| URI | https://www.proquest.com/docview/2073847640 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60VfDkGx-17MFrNNvNdJOToFQUtAQrUk9ls4_SQ19JW_rz3d2kehC8eAwbSJhlvx1mvvk-gGsqQsNjxMCmCjKwgCcCgS3HEdPUMK1CLrxryQvvduN-P0mrgltR0So3mOiBWk2lq5G7SgizSNqOwrvZPHCuUa67WllobEPdqSRQT93rfddYWm1uM2ZWNjO9dNetyNej1Q2NnXKhmxv-BcH-Xnnc_-8fHUA9FTOdH8KWnhzBrudzyuIYPjpeGsLeKKTUwiDzpY3hckz8BBFx2hrl0CJxzPchEWTsxPrXgV7PphNHIbKvKTLMPSVsQUqn6RPoPXbeH56CykLBRTwMuM3uUBpj8xqmMpooQ5XhDCOjQxSuS8tFFismZcillgaZDhVa_DMRMkzYKdQm9ptnQBCFaWuqOGYmYkInERqBWscso5FEeg6NTZAG1SkoBj8Ruvh7-RL2bCKSeG4Xb0BtkS_1FezI1WJU5E2o33e66VvTb659Sp9f088vFf-xXw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEN4Q0OjJd3yg7kGP1bbbYduD8aAQCEhIIIaTZNkH4cCrBcT_5I90d0v1YOKNg-c2aTcz_WY68818CN14zFU0BHB0qsAdDXjMYeAbjpj0FJHCpcyqljRosxl2u1Erhz6zWRhDq8ww0QK1mHBTIzeVEKKRtBS4j9OZY1SjTHc1k9BI3aIuP971L1vyUHvW9r31_Uq581R11qoC5iVch-qEB7hSOtQT0fcioTyhKIFASReYaVxS1g8F4dylXHIFRLoCNCSoAAiY1Usa8As6ifAjSxRsf1d0_BLV-TlJW6d2Udg9i1fD5Z0Xmj2JZkr5F-DbKFbZ-1_n30eFFpvK-ADl5PgQbVuuKk-O0GvZrr3Q0RKnez7wbKH9YzHCdjoKm70h6UAmNqz-AWZ4ZIQIVo5cTSdjQ4_Stwk8iC3dbY5TFe1j1N7AQU5QfqyfeYowAFMl6QkKfRUQJqMAFAMpQ9L3Ag7eGSpmJumtv_Ck92OP878vX6Odauel0WvUmvULtKsTrshy2GgR5efxQl6iLb6cD5P4yroTRm-btd4XmMII5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+online+quantum+state+estimation+using+a+matrix-exponentiated+gradient+method&rft.jtitle=arXiv.org&rft.au=Youssry%2C+Akram&rft.au=Ferrie%2C+Christopher&rft.au=Tomamichel%2C+Marco&rft.date=2019-03-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1807.01852 |