Efficient online quantum state estimation using a matrix-exponentiated gradient method

In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement res...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org
Main Authors: Youssry, Akram, Ferrie, Christopher, Tomamichel, Marco
Format: Paper
Language:English
Published: Ithaca Cornell University Library, arXiv.org 07.03.2019
Subjects:
ISSN:2331-8422
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement results obtained in each step. We show convergence of the running state estimate in probability to the true state for both noiseless and noisy measurements. We find that in the latter case the learning rate has to be chosen adaptively and decreasing to guarantee convergence beyond the noise threshold. As a practical alternative we then propose to use running averages of the measurement statistics and a constant learning rate to overcome the noise problem. The proposed algorithm is numerically compared with batch maximum-likelihood and least-squares estimators. The results show a superior performance of the new algorithm in terms of accuracy and runtime complexity.
AbstractList In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the context of machine learning. The state update is governed by a learning rate that determines how much weight is given to the new measurement results obtained in each step. We show convergence of the running state estimate in probability to the true state for both noiseless and noisy measurements. We find that in the latter case the learning rate has to be chosen adaptively and decreasing to guarantee convergence beyond the noise threshold. As a practical alternative we then propose to use running averages of the measurement statistics and a constant learning rate to overcome the noise problem. The proposed algorithm is numerically compared with batch maximum-likelihood and least-squares estimators. The results show a superior performance of the new algorithm in terms of accuracy and runtime complexity.
Author Ferrie, Christopher
Tomamichel, Marco
Youssry, Akram
Author_xml – sequence: 1
  givenname: Akram
  surname: Youssry
  fullname: Youssry, Akram
– sequence: 2
  givenname: Christopher
  surname: Ferrie
  fullname: Ferrie, Christopher
– sequence: 3
  givenname: Marco
  surname: Tomamichel
  fullname: Tomamichel, Marco
BookMark eNotjktLAzEUhYMoWGt_gLuA66k3jzuZWUqpDyi4UNyWNI-a0knaSUbm5zuoq8OBw_edG3IZU3SE3DFYygYRHnQ_hu8la0AtgTXIL8iMC8GqRnJ-TRY5HwCA14ojihn5XHsfTHCx0BSPITp6HnQsQ0dz0cVRl0vodAkp0iGHuKeaTrUPY-XG02SOJUwzS_e9tr-UzpWvZG_JldfH7Bb_OSfvT-uP1Uu1eXt-XT1uKo0cKtUqhcZ7jrWwO9Zaz6xXAqV3gJoryZXeNVYYA8o441E4sNgy5iUKbMWc3P9RT306D9PV7SENfZyEWw5KNFLVEsQPxMRVcA
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1807.01852
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-79775cff2563db19df1df7354fe05a27427ab8d3cc07cecf53e0d5911f453593
IEDL.DBID M7S
IngestDate Mon Jun 30 09:17:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-79775cff2563db19df1df7354fe05a27427ab8d3cc07cecf53e0d5911f453593
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2073847640?pq-origsite=%requestingapplication%
PQID 2073847640
PQPubID 2050157
ParticipantIDs proquest_journals_2073847640
PublicationCentury 2000
PublicationDate 20190307
PublicationDateYYYYMMDD 2019-03-07
PublicationDate_xml – month: 03
  year: 2019
  text: 20190307
  day: 07
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6817509
SecondaryResourceType preprint
Snippet In this paper, we explore an efficient online algorithm for quantum state estimation based on a matrix-exponentiated gradient method previously used in the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Convergence
Learning curves
Machine learning
Maximum likelihood estimators
Noise threshold
Quantum theory
State estimation
Weight
Title Efficient online quantum state estimation using a matrix-exponentiated gradient method
URI https://www.proquest.com/docview/2073847640
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60VfDkGx-17MHr6qab7SYnQakoaAlWpJ7Kdh-lh76StvTnO7tN9SB48RgSSJiQb77MfPMNwDUyZITF2FJrLKOxFY72mdM04pieGpE2TIdB4RfZbifdbpqVBbeilFVuMDEAtZloXyP3lRCOSNqM2d10Rv3WKN9dLVdobEPVuyREQbrX-a6xNJoSGTNfNzODddetylfD5U2UeOdCPzf8C4JDXnnc_-8THUA1U1ObH8KWHR_BbtBz6uIYPlrBGgIzCll7YZDZAmO4GJEwQUS8t8Z6aJF45fuAKDLyZv0ralfTydhLiPAyQwZ5kITNyXrT9Al0HlvvD0-0XKFAlcD_QonsTmjnkNdw049S4yLjJBexs0wo36WVqp8YrjWT2monuGVGIP65WHCR8lOojPGeZ0CcSZR0CIxaIAkUMm3oNFEJsg8pHUvkOdQ2QeqVX0HR-4nQxd-nL2EPiUgatF2yBpV5vrBXsKOX82GR16F632pnb_XwcvEoe37NPr8Ax0Ww1g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEN4Q0OjJd3yg7kGP1e1j2fZgPCgEAhISiOEkWfZBOPBqAfE_-SOd3VI9mHjj4LlNms1Mv_l25psZhG6AIQMsBspRUhEnUFQ7faKF4_oQnjxXSCJso3CDNZthtxu1cugz64UxssoMEy1Qy4kwOXKTCfEBSUsBeZzOHLM1ylRXsxUaqVvU1cc7XNmSh9oz2PfW8yrlzlPVWW8VcDiFqxIDwkOF1hDqfdl3I6ldqZlPA60I5aZwyXg_lL4QhAklNPUVkRQgQQfUp2b0EgB-AUiEF1mhYPs7o-OVGPBzPy2d2kFh9zxeDZd3bmjmJJou5V-Ab6NYZe9_nX8fFVp8quIDlFPjQ7RttaoiOUKvZTv2AqIlTud84NkC_GMxwrY7Cpu5IWlDJjaq_gHmeGQWEawctZpOxkYeBa9JPIit3G2O0y3ax6i9gYOcoPwYvnmKsJYhZxpAX1AguJRFnohCHgKzYkyTkJ2hYmaS3voPT3o_9jj_-_E12ql2Xhq9Rq1Zv0C7QLgiq2FjRZSfxwt1ibbEcj5M4ivrThi9bdZ6X4t6CFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+online+quantum+state+estimation+using+a+matrix-exponentiated+gradient+method&rft.jtitle=arXiv.org&rft.au=Youssry%2C+Akram&rft.au=Ferrie%2C+Christopher&rft.au=Tomamichel%2C+Marco&rft.date=2019-03-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1807.01852