An interior proximal gradient method for nonconvex optimization
We consider structured minimization problems subject to smooth inequality constraints and present a flexible algorithm that combines interior point (IP) and proximal gradient schemes. While traditional IP methods cannot cope with nonsmooth objective functions and proximal algorithms cannot handle co...
Saved in:
| Published in: | arXiv.org |
|---|---|
| Main Authors: | , |
| Format: | Paper |
| Language: | English |
| Published: |
Ithaca
Cornell University Library, arXiv.org
29.01.2024
|
| Subjects: | |
| ISSN: | 2331-8422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider structured minimization problems subject to smooth inequality constraints and present a flexible algorithm that combines interior point (IP) and proximal gradient schemes. While traditional IP methods cannot cope with nonsmooth objective functions and proximal algorithms cannot handle complicated constraints, their combined usage is shown to successfully compensate the respective shortcomings. We provide a theoretical characterization of the algorithm and its asymptotic properties, deriving convergence results for fully nonconvex problems, thus bridging the gap with previous works that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual pair approximately satisfying suitable optimality conditions. As a byproduct of our analysis of proximal gradient iterations we demonstrate that a slight refinement of traditional backtracking techniques waives the need for upper bounding the stepsize sequence, as required in existing results for the nonconvex setting. |
|---|---|
| AbstractList | We consider structured minimization problems subject to smooth inequality constraints and present a flexible algorithm that combines interior point (IP) and proximal gradient schemes. While traditional IP methods cannot cope with nonsmooth objective functions and proximal algorithms cannot handle complicated constraints, their combined usage is shown to successfully compensate the respective shortcomings. We provide a theoretical characterization of the algorithm and its asymptotic properties, deriving convergence results for fully nonconvex problems, thus bridging the gap with previous works that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual pair approximately satisfying suitable optimality conditions. As a byproduct of our analysis of proximal gradient iterations we demonstrate that a slight refinement of traditional backtracking techniques waives the need for upper bounding the stepsize sequence, as required in existing results for the nonconvex setting. |
| Author | De Marchi, Alberto Themelis, Andreas |
| Author_xml | – sequence: 1 givenname: Alberto surname: De Marchi fullname: De Marchi, Alberto – sequence: 2 givenname: Andreas surname: Themelis fullname: Themelis, Andreas |
| BookMark | eNotj01LAzEURYMoWGt_gLsB11NfXr5XUopWoeCm-5ImqaZ0kppJy-Cvd0BXd3HgnnvvyHXKKRDyQGHOtRDwZMsQL3NE0HMAZcwVmSBjtNUc8ZbM-v4AACgVCsEm5HmRmphqKDGX5lTyEDt7bD6L9TGk2nShfmXf7Ec4elxOlzA0-VRjF39sjTndk5u9PfZh9p9Tsnl92Szf2vXH6n25WLdWILTScS61cZLuDBoeJFVUKBqMM0iDc8wo6632Ulnmd8JpBcAlaASlqGeUTcnjX-048fsc-ro95HNJo3GL0igEOh5mvxyeS70 |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2208.00799 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-6c44689c61b9294e6171571e9c921ecc397ada8d67a3db5c8700460820771d313 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:17:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-6c44689c61b9294e6171571e9c921ecc397ada8d67a3db5c8700460820771d313 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2697201220?pq-origsite=%requestingapplication% |
| PQID | 2697201220 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2697201220 |
| PublicationCentury | 2000 |
| PublicationDate | 20240129 |
| PublicationDateYYYYMMDD | 2024-01-29 |
| PublicationDate_xml | – month: 01 year: 2024 text: 20240129 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8589628 |
| SecondaryResourceType | preprint |
| Snippet | We consider structured minimization problems subject to smooth inequality constraints and present a flexible algorithm that combines interior point (IP) and... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Asymptotic properties Optimization |
| Title | An interior proximal gradient method for nonconvex optimization |
| URI | https://www.proquest.com/docview/2697201220 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20VfDkN37Usgevsc3uJps9FZUWBS1Be6instkkEmiTmtTSn-_sNtWD4MVjCGTD7DL7ZubNPIBrM5MtoYYU5jHu8NRTjvJY1-ERV-ZSiD1lVUuexHAYjMcyrBNuVU2r3PhE66jjQpsceYf6UlBTB-r25h-OUY0y1dVaQmMbmmZSGW9A864_DF--syzUF4iZ2bqcaYd3dVS5ypY3-B1DohRS_nLC9mYZ7P_3nw6gGap5Uh7CVpIfwa5ldOrqGHq3OTGzIMqsKIkhq2QzNSXvpaV4LchaOZogZCV5kVvu-YoU6D9mdWPmCYwG_dH9g1OrJaBxTQioMbALpPbdCBEPTxCZuJ5wE6kldXGfEHeoWAWxLxSLI08HwvaNIgAQwo2Zy06hgeslZ0Ck4lFXR3EgeMpTRpXSfoqwLtU2kmbn0NqYY1Kf-GryY4uLv19fwh5FYGDSGFS2oLEoP5Mr2NHLRVaV7XoD24aD-YpP4eNz-PYFghinvg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gaPTkOz5Q96DHCt1uu92DIUYlEJCQyIEb2W5bQyItFkT8Uf5HZxeqBxNvHDw32c7O7s7zmxmAS92TLaIaFOY6zGKxKy3pOlWLBUxqpRC60kwtafNOx-_3RbcAn3ktjIZV5jLRCOowVTpGXqGe4FTngaq18aulp0bp7Go-QmNxLVrRxzu6bJOb5j2e7xWl9YfeXcNaThVAIrSrpNAB8oXy7AAtAxahBrddbkdCCWrjflA_y1D6ocelEwau8rmpr0RFybkdOraDy65BiWnhb5CCT98hHepxNNCdRe7UdAqryGw-nF0j0RqxyYX4JfGNGqtv_zMG7ECpK8dRtguFKNmDDYNWVZN9qN0mRPe5yIZpRjQQZziSL-Q5M_C1KVlMxSZojpMkTQyufk5SlI2jZdHpAfRWQfIhFPF_0REQIVlQVUHocxaz2KFSKi9GkzVWJkrgHEM55_5g-Zongx_Wn_z9-QI2G73H9qDd7LROYYuiAaTDNVSUoTjN3qIzWFez6XCSnZubQ2Cw4oP6Akzi-7o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interior+proximal+gradient+method+for+nonconvex+optimization&rft.jtitle=arXiv.org&rft.au=De+Marchi%2C+Alberto&rft.au=Themelis%2C+Andreas&rft.date=2024-01-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2208.00799 |