On Minimum-Dispersion Control of Nonlinear Diffusion Processes
This work collects some methodological insights for numerical solution of a "minimum-dispersion" control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation calle...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
13.05.2024
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This work collects some methodological insights for numerical solution of a "minimum-dispersion" control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation called \(\infty\)-order variational analysis. This framework consists in establishing an exact representation of the increment (\(\infty\)-order variation) of the objective functional using the duality, implied by the transformation of the nonlinear stochastic control problem to a linear deterministic control of the Fokker-Planck equation. The resulting formula for the cost increment analytically represents a "law-feedback" control for the diffusion process. This control mechanism enables us to learn time-dependent coefficients for a predefined Markovian control structure using Monte Carlo simulations with a modest population of samples. Numerical experiments prove the vitality of our approach. |
|---|---|
| Bibliographie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2405.07676 |