On Minimum-Dispersion Control of Nonlinear Diffusion Processes

This work collects some methodological insights for numerical solution of a "minimum-dispersion" control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation calle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Chertovskih, Roman, Pogodaev, Nikolay, Staritsyn, Maxim, A Pedro Aguiar
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 13.05.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work collects some methodological insights for numerical solution of a "minimum-dispersion" control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation called \(\infty\)-order variational analysis. This framework consists in establishing an exact representation of the increment (\(\infty\)-order variation) of the objective functional using the duality, implied by the transformation of the nonlinear stochastic control problem to a linear deterministic control of the Fokker-Planck equation. The resulting formula for the cost increment analytically represents a "law-feedback" control for the diffusion process. This control mechanism enables us to learn time-dependent coefficients for a predefined Markovian control structure using Monte Carlo simulations with a modest population of samples. Numerical experiments prove the vitality of our approach.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2405.07676