On Minimum-Dispersion Control of Nonlinear Diffusion Processes
This work collects some methodological insights for numerical solution of a "minimum-dispersion" control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation calle...
Uložené v:
| Vydané v: | arXiv.org |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Ithaca
Cornell University Library, arXiv.org
13.05.2024
|
| Predmet: | |
| ISSN: | 2331-8422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This work collects some methodological insights for numerical solution of a "minimum-dispersion" control problem for nonlinear stochastic differential equations, a particular relaxation of the covariance steering task. The main ingredient of our approach is the theoretical foundation called \(\infty\)-order variational analysis. This framework consists in establishing an exact representation of the increment (\(\infty\)-order variation) of the objective functional using the duality, implied by the transformation of the nonlinear stochastic control problem to a linear deterministic control of the Fokker-Planck equation. The resulting formula for the cost increment analytically represents a "law-feedback" control for the diffusion process. This control mechanism enables us to learn time-dependent coefficients for a predefined Markovian control structure using Monte Carlo simulations with a modest population of samples. Numerical experiments prove the vitality of our approach. |
|---|---|
| Bibliografia: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2405.07676 |