From A-to-Z Review of Clustering Validation Indices
Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effect...
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
18.07.2024
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effectiveness of such clustering procedures directly impacts the homogeneity of clusters, underscoring the significance of evaluating algorithmic outcomes. Consequently, the assessment of clustering quality presents a significant and complex endeavor. A pivotal aspect affecting clustering validation is the cluster validity metric, which aids in determining the optimal number of clusters. The main goal of this study is to comprehensively review and explain the mathematical operation of internal and external cluster validity indices, but not all, to categorize these indices and to brainstorm suggestions for future advancement of clustering validation research. In addition, we review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms, such as the evolutionary clustering algorithm star (ECA*). Finally, we suggest a classification framework for examining the functionality of both internal and external clustering validation measures regarding their ideal values, user-friendliness, responsiveness to input data, and appropriateness across various fields. This classification aids researchers in selecting the appropriate clustering validation measure to suit their specific requirements. |
|---|---|
| AbstractList | Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effectiveness of such clustering procedures directly impacts the homogeneity of clusters, underscoring the significance of evaluating algorithmic outcomes. Consequently, the assessment of clustering quality presents a significant and complex endeavor. A pivotal aspect affecting clustering validation is the cluster validity metric, which aids in determining the optimal number of clusters. The main goal of this study is to comprehensively review and explain the mathematical operation of internal and external cluster validity indices, but not all, to categorize these indices and to brainstorm suggestions for future advancement of clustering validation research. In addition, we review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms, such as the evolutionary clustering algorithm star (ECA*). Finally, we suggest a classification framework for examining the functionality of both internal and external clustering validation measures regarding their ideal values, user-friendliness, responsiveness to input data, and appropriateness across various fields. This classification aids researchers in selecting the appropriate clustering validation measure to suit their specific requirements. |
| Author | Abdalla, Naz N Hassan, Bryar A Noor, Bahjat Tay Ahmed, Aram M Rashid, Tarik A Hassan, Alla A |
| Author_xml | – sequence: 1 givenname: Bryar surname: Hassan middlename: A fullname: Hassan, Bryar A – sequence: 2 givenname: Bahjat surname: Noor middlename: Tay fullname: Noor, Bahjat Tay – sequence: 3 givenname: Alla surname: Hassan middlename: A fullname: Hassan, Alla A – sequence: 4 givenname: Aram surname: Ahmed middlename: M fullname: Ahmed, Aram M – sequence: 5 givenname: Tarik surname: Rashid middlename: A fullname: Rashid, Tarik A – sequence: 6 givenname: Naz surname: Abdalla middlename: N fullname: Abdalla, Naz N |
| BookMark | eNotjUFLwzAYQIMoOOd-gLeA59T0-_Kl6XEU5wYDQYYHLyNpEumojTbd9Oc70NPjXd67YZdDGgJjd6UslCGSD3b86U4FKFkVIEHpCzYDxFIYBXDNFjkfpJSgKyDCGcPVmD74UkxJvPGXcOrCN0-RN_0xT2Hshnf-avvO26lLA98MvmtDvmVX0fY5LP45Z7vV465Zi-3z06ZZboUlkILQE4GOjlwtnZIl1NYb7SukWCG02kWLSpEzdSRfngXJhMro1qAD63HO7v-yn2P6OoY87Q_pOA7n4x6l0Yo0aYm_BPpGew |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2407.20246 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-53d5526fb5b90b40129ad86d735f732c6bfa3445b89f5d1fa3358e786c83b2ad3 |
| IEDL.DBID | M7S |
| IngestDate | Mon Jun 30 09:26:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-53d5526fb5b90b40129ad86d735f732c6bfa3445b89f5d1fa3358e786c83b2ad3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/3086456560?pq-origsite=%requestingapplication% |
| PQID | 3086456560 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_3086456560 |
| PublicationCentury | 2000 |
| PublicationDate | 20240718 |
| PublicationDateYYYYMMDD | 2024-07-18 |
| PublicationDate_xml | – month: 07 year: 2024 text: 20240718 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8766196 |
| SecondaryResourceType | preprint |
| Snippet | Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Algorithms Classification Clustering Datasets Evolutionary algorithms Homogeneity Performance evaluation |
| Title | From A-to-Z Review of Clustering Validation Indices |
| URI | https://www.proquest.com/docview/3086456560 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9a9uA1dnfz2j2JlhYLWhYtpXopeWygUHfrblv8-SbZrR4EL14CQy7JTDKPb4YZAK6NjaEswAJiIWKIJY2hkDqADIW-Fmblrsp3_MiGw2gyiZMacCvrssqNTnSKWuXSYuQdZHxv5334t4sPaKdG2exqPUJjGzRtl4TAle69fGMsIWXGY0ZVMtO17urw4nO2vrFhjIkNQ0x_qWBnV_r7_z3RAWgmfJEWh2ArzY7ArqvnlOUxQP0if_fu4DKHb16F_3u59rrzlW2MYMyVNzYOeDVPyRtkyqqLEzDq90bdB1jPR4CcmKCPIEVISLUgIvYFtogSVxFVDBFtmCyp0BxhTEQUa6ICQyASpSyiMkIi5AqdgkaWZ-kZ8HRkglOEBGYyxMz8acQJV4GRGkdh7ONz0NqwYFq_8XL6c_-Lv7cvwZ7ldYWItkBjWazSK7Aj18tZWbRB8743TJ7bTnSGSgZPyesXRsqhpg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qq-jJNz6q5qDH1WYfeRxEpFpaWkvBUoqXspsHFDSpSVv1R_kfnU0aPQjeevCyEBbCMjP5Zr6ZyQ7AOfoYyza5Ilwpl3DPconyQpPYjNZChavMunwHHbvbdYZDt1eCz-JfGN1WWWBiBtR-7Okc-RXD2DuLPmo3k1eip0bp6moxQiM3i3bw8YaULb1u3aF-Lyht3PfrTbKYKkCkQKokmC8EtUIllFtTXOdhpO9Yvs1EiEfzLBVKxrlQjhsK38QHJpzAdizPYYpKn-FrV6CCUQR1s07Bx--UDrVsDNBZXjvNbgq7ksn7eH6pWRNSUcqtX4ifubHG5j8TwBZUenISJNtQCqIdWMu6Vb10F1gjiV-MWzKNyZORVzeMODTqzzN97QM6Y2OA9CKfFmW0Il-D4R70l3HMfShHcRQcgBE6SL0ZU9z2KLcRsZgU0jfRJiWjbo0fQrWQ-GjxBaejH3Ef_b19BuvN_kNn1Gl128ewodWsc7-mU4XyNJkFJ7DqzafjNDnNrMWA0ZKV8wU1Ovkf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+A-to-Z+Review+of+Clustering+Validation+Indices&rft.jtitle=arXiv.org&rft.au=Hassan%2C+Bryar+A&rft.au=Noor%2C+Bahjat+Tay&rft.au=Hassan%2C+Alla+A&rft.au=Ahmed%2C+Aram+M&rft.date=2024-07-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2407.20246 |