From A-to-Z Review of Clustering Validation Indices

Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effect...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Hassan, Bryar A, Noor, Bahjat Tay, Hassan, Alla A, Ahmed, Aram M, Rashid, Tarik A, Abdalla, Naz N
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 18.07.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effectiveness of such clustering procedures directly impacts the homogeneity of clusters, underscoring the significance of evaluating algorithmic outcomes. Consequently, the assessment of clustering quality presents a significant and complex endeavor. A pivotal aspect affecting clustering validation is the cluster validity metric, which aids in determining the optimal number of clusters. The main goal of this study is to comprehensively review and explain the mathematical operation of internal and external cluster validity indices, but not all, to categorize these indices and to brainstorm suggestions for future advancement of clustering validation research. In addition, we review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms, such as the evolutionary clustering algorithm star (ECA*). Finally, we suggest a classification framework for examining the functionality of both internal and external clustering validation measures regarding their ideal values, user-friendliness, responsiveness to input data, and appropriateness across various fields. This classification aids researchers in selecting the appropriate clustering validation measure to suit their specific requirements.
AbstractList Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering algorithms differ as they are susceptible to the intrinsic characteristics of the original dataset, including noise and dimensionality. The effectiveness of such clustering procedures directly impacts the homogeneity of clusters, underscoring the significance of evaluating algorithmic outcomes. Consequently, the assessment of clustering quality presents a significant and complex endeavor. A pivotal aspect affecting clustering validation is the cluster validity metric, which aids in determining the optimal number of clusters. The main goal of this study is to comprehensively review and explain the mathematical operation of internal and external cluster validity indices, but not all, to categorize these indices and to brainstorm suggestions for future advancement of clustering validation research. In addition, we review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms, such as the evolutionary clustering algorithm star (ECA*). Finally, we suggest a classification framework for examining the functionality of both internal and external clustering validation measures regarding their ideal values, user-friendliness, responsiveness to input data, and appropriateness across various fields. This classification aids researchers in selecting the appropriate clustering validation measure to suit their specific requirements.
Author Abdalla, Naz N
Hassan, Bryar A
Noor, Bahjat Tay
Ahmed, Aram M
Rashid, Tarik A
Hassan, Alla A
Author_xml – sequence: 1
  givenname: Bryar
  surname: Hassan
  middlename: A
  fullname: Hassan, Bryar A
– sequence: 2
  givenname: Bahjat
  surname: Noor
  middlename: Tay
  fullname: Noor, Bahjat Tay
– sequence: 3
  givenname: Alla
  surname: Hassan
  middlename: A
  fullname: Hassan, Alla A
– sequence: 4
  givenname: Aram
  surname: Ahmed
  middlename: M
  fullname: Ahmed, Aram M
– sequence: 5
  givenname: Tarik
  surname: Rashid
  middlename: A
  fullname: Rashid, Tarik A
– sequence: 6
  givenname: Naz
  surname: Abdalla
  middlename: N
  fullname: Abdalla, Naz N
BookMark eNotjUFLwzAYQIMoOOd-gLeA59T0-_Kl6XEU5wYDQYYHLyNpEumojTbd9Oc70NPjXd67YZdDGgJjd6UslCGSD3b86U4FKFkVIEHpCzYDxFIYBXDNFjkfpJSgKyDCGcPVmD74UkxJvPGXcOrCN0-RN_0xT2Hshnf-avvO26lLA98MvmtDvmVX0fY5LP45Z7vV465Zi-3z06ZZboUlkILQE4GOjlwtnZIl1NYb7SukWCG02kWLSpEzdSRfngXJhMro1qAD63HO7v-yn2P6OoY87Q_pOA7n4x6l0Yo0aYm_BPpGew
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2407.20246
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-53d5526fb5b90b40129ad86d735f732c6bfa3445b89f5d1fa3358e786c83b2ad3
IEDL.DBID M7S
IngestDate Mon Jun 30 09:26:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-53d5526fb5b90b40129ad86d735f732c6bfa3445b89f5d1fa3358e786c83b2ad3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/3086456560?pq-origsite=%requestingapplication%
PQID 3086456560
PQPubID 2050157
ParticipantIDs proquest_journals_3086456560
PublicationCentury 2000
PublicationDate 20240718
PublicationDateYYYYMMDD 2024-07-18
PublicationDate_xml – month: 07
  year: 2024
  text: 20240718
  day: 18
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8766196
SecondaryResourceType preprint
Snippet Data clustering involves identifying latent similarities within a dataset and organizing them into clusters or groups. The outcomes of various clustering...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Classification
Clustering
Datasets
Evolutionary algorithms
Homogeneity
Performance evaluation
Title From A-to-Z Review of Clustering Validation Indices
URI https://www.proquest.com/docview/3086456560
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aKnjyjY9a9uA1dnfz2j2JlhYLWhYtpXopeWygUHfrblv8-SbZrR4EL14CQy7JTDKPb4YZAK6NjaEswAJiIWKIJY2hkDqADIW-Fmblrsp3_MiGw2gyiZMacCvrssqNTnSKWuXSYuQdZHxv5334t4sPaKdG2exqPUJjGzRtl4TAle69fGMsIWXGY0ZVMtO17urw4nO2vrFhjIkNQ0x_qWBnV_r7_z3RAWgmfJEWh2ArzY7ArqvnlOUxQP0if_fu4DKHb16F_3u59rrzlW2MYMyVNzYOeDVPyRtkyqqLEzDq90bdB1jPR4CcmKCPIEVISLUgIvYFtogSVxFVDBFtmCyp0BxhTEQUa6ICQyASpSyiMkIi5AqdgkaWZ-kZ8HRkglOEBGYyxMz8acQJV4GRGkdh7ONz0NqwYFq_8XL6c_-Lv7cvwZ7ldYWItkBjWazSK7Aj18tZWbRB8743TJ7bTnSGSgZPyesXRsqhpg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qq-jJNz6q5qDH1WYfeRxEpFpaWkvBUoqXspsHFDSpSVv1R_kfnU0aPQjeevCyEBbCMjP5Zr6ZyQ7AOfoYyza5Ilwpl3DPconyQpPYjNZChavMunwHHbvbdYZDt1eCz-JfGN1WWWBiBtR-7Okc-RXD2DuLPmo3k1eip0bp6moxQiM3i3bw8YaULb1u3aF-Lyht3PfrTbKYKkCkQKokmC8EtUIllFtTXOdhpO9Yvs1EiEfzLBVKxrlQjhsK38QHJpzAdizPYYpKn-FrV6CCUQR1s07Bx--UDrVsDNBZXjvNbgq7ksn7eH6pWRNSUcqtX4ifubHG5j8TwBZUenISJNtQCqIdWMu6Vb10F1gjiV-MWzKNyZORVzeMODTqzzN97QM6Y2OA9CKfFmW0Il-D4R70l3HMfShHcRQcgBE6SL0ZU9z2KLcRsZgU0jfRJiWjbo0fQrWQ-GjxBaejH3Ef_b19BuvN_kNn1Gl128ewodWsc7-mU4XyNJkFJ7DqzafjNDnNrMWA0ZKV8wU1Ovkf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+A-to-Z+Review+of+Clustering+Validation+Indices&rft.jtitle=arXiv.org&rft.au=Hassan%2C+Bryar+A&rft.au=Noor%2C+Bahjat+Tay&rft.au=Hassan%2C+Alla+A&rft.au=Ahmed%2C+Aram+M&rft.date=2024-07-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2407.20246