Re-ranking Based Diversification: A Unifying View
We analyze different re-ranking algorithms for diversification and show that majority of them are based on maximizing submodular/modular functions from the class of parameterized concave/linear over modular functions. We study the optimality of such algorithms in terms of the `total curvature'....
Uloženo v:
| Vydáno v: | arXiv.org |
|---|---|
| Hlavní autor: | |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Ithaca
Cornell University Library, arXiv.org
26.06.2019
|
| Témata: | |
| ISSN: | 2331-8422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We analyze different re-ranking algorithms for diversification and show that majority of them are based on maximizing submodular/modular functions from the class of parameterized concave/linear over modular functions. We study the optimality of such algorithms in terms of the `total curvature'. We also show that by adjusting the hyperparameter of the concave/linear composition to trade-off relevance and diversity, if any, one is in fact tuning the `total curvature' of the function for relevance-diversity trade-off. |
|---|---|
| Bibliografie: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.1906.11285 |