Data intensive physics analysis in Azure cloud
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is one of the largest data producers in the scientific world, with standard data products centrally produced, and then used by often competing teams within the collaboration. This work is focused on how a local institution...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
25.10.2021
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is one of the largest data producers in the scientific world, with standard data products centrally produced, and then used by often competing teams within the collaboration. This work is focused on how a local institution, University of California San Diego (UCSD), partnered with the Open Science Grid (OSG) to use Azure cloud resources to augment its available computing to accelerate time to results for multiple analyses pursued by a small group of collaborators. The OSG is a federated infrastructure allowing many independent resource providers to serve many independent user communities in a transparent manner. Historically the resources would come from various research institutions, spanning small universities to large HPC centers, based on either community needs or grant allocations, so adding commercial clouds as resource providers is a natural evolution. The OSG technology allows for easy integration of cloud resources, but the data-intensive nature of CMS compute jobs required the deployment of additional data caching infrastructure to ensure high efficiency. |
|---|---|
| AbstractList | The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is one of the largest data producers in the scientific world, with standard data products centrally produced, and then used by often competing teams within the collaboration. This work is focused on how a local institution, University of California San Diego (UCSD), partnered with the Open Science Grid (OSG) to use Azure cloud resources to augment its available computing to accelerate time to results for multiple analyses pursued by a small group of collaborators. The OSG is a federated infrastructure allowing many independent resource providers to serve many independent user communities in a transparent manner. Historically the resources would come from various research institutions, spanning small universities to large HPC centers, based on either community needs or grant allocations, so adding commercial clouds as resource providers is a natural evolution. The OSG technology allows for easy integration of cloud resources, but the data-intensive nature of CMS compute jobs required the deployment of additional data caching infrastructure to ensure high efficiency. |
| Author | Sfiligoi, Igor Davila, Diego Würthwein, Frank |
| Author_xml | – sequence: 1 givenname: Igor surname: Sfiligoi fullname: Sfiligoi, Igor – sequence: 2 givenname: Frank surname: Würthwein fullname: Würthwein, Frank – sequence: 3 givenname: Diego surname: Davila fullname: Davila, Diego |
| BookMark | eNotjk9Lw0AUxBdRsNZ-AG8LnhPf7nv7J8dStQoFL72XzeaJKSGp2aSon94FPc0wP2aYG3HZDz0LcaegJG8MPITxqz2XWuVAofLuQiw0oio8aX0tVikdAUBbp43BhSgfwxRk20_cp_bM8vTxndqYZOhDl13KSK5_5pFl7Ia5uRVX76FLvPrXpdg_P-03L8Xubfu6We-KYDQUZHRDyIENsgpO2Qobis7W0TlvHNdWqeDJWxsVVRVVwFRDTQ6BuG4Yl-L-b_Y0Dp8zp-lwHOYxX0oHbXLNESDgL_BGRR4 |
| ContentType | Paper |
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2110.13187 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-452d43eae53e1a71693d4c76bc77857eb611a84866c1499490e4b0b47304ebde3 |
| IEDL.DBID | PIMPY |
| IngestDate | Mon Jun 30 09:28:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-452d43eae53e1a71693d4c76bc77857eb611a84866c1499490e4b0b47304ebde3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2586674030?pq-origsite=%requestingapplication% |
| PQID | 2586674030 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_2586674030 |
| PublicationCentury | 2000 |
| PublicationDate | 20211025 |
| PublicationDateYYYYMMDD | 2021-10-25 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211025 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7740192 |
| SecondaryResourceType | preprint |
| Snippet | The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) is one of the largest data producers in the scientific world, with standard data... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Allocations Clouds Infrastructure Large Hadron Collider Research facilities Solenoids Standard data |
| Title | Data intensive physics analysis in Azure cloud |
| URI | https://www.proquest.com/docview/2586674030 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BCxITb_EoVQbWtPErTibEoxUMVBF0KFN1fiBVQk1J2grx67HTFAYkJmYvZ_t85zt__j6ASxtTqlNtQsIQQ67RhipCV6q4u7XnozKSqUpsQg4GyWiUZvX36LKGVa5jYhWoV2zPHrftgnDX5Np3zLtUJHEsufPQq9l76DWk_FtrLaixCU1PvEUb0MweHrOX754LjaW7QbPV42ZF5dXF4mOy7PgqqEOce8tfIbnKM_3d_7Vwz1mGM1vsw4adHsB2hfbU5SF07nCOwWSNXg9W7Y0ywJqhxA0F15-Lwgb6LV-YIxj2e8Pb-7AWTghRuGqQC2o4s2gFswQ9HQ4zXMtYaSkT4UVQCMGEO_u0q49SnkaWq0hxd9i5VcayY2hM86k9gYCkiUZiNFWIXKVMCaG4291XQ7hOSHQKrfVajGvnL8c_Uz_7e_gcdqiHiLhUQEULGvNiYS9gSy_nk7JoQ_OmN8ie2h6O-dyu9_ILzICtqA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VFgQndrEUyAGOaWPH2Q4IIUrVqot66KGcIm9IlVBbkrYs_8Q_Mk4TOCBx48DZUpbxm7HfeDwP4FL7lMpIKpu4nNtMcm0LhyNVwb216UelAldkYhNBvx-ORtGgBB_FXRhTVlnExCxQq6k0OfI69ULfDxhi8mb2bBvVKHO6WkhorGDR0W8vSNnS63YD5_eK0ub98K5l56oCNveQKjGPKuZqrj1XE256xbiKycAXMghCzyiEEMJDhi-TSB4iFjmaCUcw9ASmhdIuPnYNKgyxTstQGbR7g4evpA71A9yiu6vT06xXWJ0nr-NlzdCsGkH_CX7E_Gwha27_MxPs4K_zmU52oaQne7CR1avKdB9qDT7n1riov7dWCZrU4nmPFRyybt8Xibbk03ShDmD4F194COXJdKKPwCJRKDlRkgrOmYhc4XmCIT4fFWEyJM4xVAtjx7n7pvG3pU9-H76Azdaw14277X7nFLaoKXjBhY16VSjPk4U-g3W5nI_T5DyHigXxH8_MJ8e4-Ts |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+intensive+physics+analysis+in+Azure+cloud&rft.jtitle=arXiv.org&rft.au=Sfiligoi%2C+Igor&rft.au=W%C3%BCrthwein%2C+Frank&rft.au=Davila%2C+Diego&rft.date=2021-10-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2110.13187 |