A Novel Micro-Doppler Coherence Loss for Deep Learning Radar Applications

Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Czerkawski, Mikolaj, Ilioudis, Christos, Clemente, Carmine, Michie, Craig, Andonovic, Ivan, Tachtatzis, Christos
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.04.2024
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to this new domain with no adjustment made to the objective function. This practice results in a missed opportunity to encourage the model to prioritize features that are particularly relevant for micro-Doppler applications. Thus the paper introduces a micro-Doppler coherence loss, minimized when the normalized power of micro-Doppler oscillatory components between input and output is matched. The experiments conducted on real data show that the application of the introduced loss results in models more resilient to noise.
AbstractList Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to this new domain with no adjustment made to the objective function. This practice results in a missed opportunity to encourage the model to prioritize features that are particularly relevant for micro-Doppler applications. Thus the paper introduces a micro-Doppler coherence loss, minimized when the normalized power of micro-Doppler oscillatory components between input and output is matched. The experiments conducted on real data show that the application of the introduced loss results in models more resilient to noise.
Author Michie, Craig
Clemente, Carmine
Tachtatzis, Christos
Andonovic, Ivan
Czerkawski, Mikolaj
Ilioudis, Christos
Author_xml – sequence: 1
  givenname: Mikolaj
  surname: Czerkawski
  fullname: Czerkawski, Mikolaj
– sequence: 2
  givenname: Christos
  surname: Ilioudis
  fullname: Ilioudis, Christos
– sequence: 3
  givenname: Carmine
  surname: Clemente
  fullname: Clemente, Carmine
– sequence: 4
  givenname: Craig
  surname: Michie
  fullname: Michie, Craig
– sequence: 5
  givenname: Ivan
  surname: Andonovic
  fullname: Andonovic, Ivan
– sequence: 6
  givenname: Christos
  surname: Tachtatzis
  fullname: Tachtatzis, Christos
BookMark eNotjctKw0AUQAdRsNZ-gLsB14k388pkGVIfhagg3Zeb5I6mhJk40xY_34KuzuZwzg279METY3cF5MpqDQ8Yf8ZTLhSovNBSmQu2EFIWmVVCXLNVSnsAEKYUWssF29T8LZxo4q9jH0O2DvM8UeRN-KJIvifehpS4C5GviWbeEkY_-k_-gQNGXp_tscfDGHy6ZVcOp0Srfy7Z9ulx27xk7fvzpqnbDLWATJSGXAUDKDBO2s51tjOVdIhGaDdY0qUc0CiHGp1ThbUdDVQhDs52hUa5ZPd_2TmG7yOlw24fjtGfjzsJSldloQDkL_DEUAc
ContentType Paper
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.2404.15346
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-276ef90d0406f38bfb8b693faa625fd8e573da64fa5aff4188bede9aadf8b15a3
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:19:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-276ef90d0406f38bfb8b693faa625fd8e573da64fa5aff4188bede9aadf8b15a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/3045971400?pq-origsite=%requestingapplication%
PQID 3045971400
PQPubID 2050157
ParticipantIDs proquest_journals_3045971400
PublicationCentury 2000
PublicationDate 20240412
PublicationDateYYYYMMDD 2024-04-12
PublicationDate_xml – month: 04
  year: 2024
  text: 20240412
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8663673
SecondaryResourceType preprint
Snippet Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Coherence
Deep learning
Title A Novel Micro-Doppler Coherence Loss for Deep Learning Radar Applications
URI https://www.proquest.com/docview/3045971400
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UNPHkOz6Q9OC1wO623e7JoEAkEbJBDngis9vWkBgWFyT-fKfroiYmXry16aXpY-ab1zeEXAueeKCUYR6ifcZtIBhIDQzfhvAVgNA2LZpNhMOhmkyiuHS4Lcu0yo1MLAS1zlLnI2-6iF7k2OVaN4tX5rpGuehq2UJjm1QdUxmvkOptdxiPvrwsvgwRMwef4cyCvKsJ-fts3UBFxhv427n8JYQLzdLb_--eDkg1hoXJD8mWmR-R3SKjM10ek36bDrO1eaEDl3LHOhnCTZNTV45RFPjRB1SPFCEr7RizoCXP6jMdgYactn_EtU_IuNcd392zsm8CA4HGoB9KY6OWxu8pbaASm6hERoEFQFvHamVEGGiQ3IIAa7mnVGK0iQC0VYknIDgllXk2N2eEhoi_EiuFjqTiXJsErTUvwiHeu6-sPCe1zcFMy7e_nH6fysXfy5dkz0eIwArmxBqprPI3c0V20vVqtszr5VXWXTbmI87i_iB--gAT5qxB
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60VfTkGx9V96DHVZPsbjYHEbFKi7WI9uCtTLq7IkhbU636o_yPzq6tCoI3D94CgRAyX775ZucFsCNFHqHWlkek9rlwieSoDHLChow1ojSuE5ZNpM2mvrnJLifgbdwL48sqx5wYiNr0Ov6MfN9n9DI_Xe7gqP_A_dYon10dr9D4gMW5fX2mkG1wWK-SfXfj-Oy0dVLjo60CHCWFSnGqrMsODIFXuUTnLte5yhKHSJGAM9rKNDGohEOJzolI69wamyEap_NIYkKPnYSy8OQfKgWvP490YpWSQE8-cqdhUtg-Fi93wz3ymmKPqEWoH4wf3NjZ3D_7APNQvsS-LRZgwnYXYTpUq3YGS1A_Zs3e0N6zC19OyKs9ktK2YL7VJDQvsga5fkZynFWt7bPRDNlbdoUGC3b8LWe_DK2_ePkVKHV7XbsKLCVtmTslTaa0EMbmFIlGGV0SpmPt1BpUxnZoj_7rQfvLCOu_396GmVrrotFu1JvnGzAbkxTiYUJkBUqPxZPdhKnO8PFuUGwFDDFo_7HJ3gH8wQel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Micro-Doppler+Coherence+Loss+for+Deep+Learning+Radar+Applications&rft.jtitle=arXiv.org&rft.au=Czerkawski%2C+Mikolaj&rft.au=Ilioudis%2C+Christos&rft.au=Clemente%2C+Carmine&rft.au=Michie%2C+Craig&rft.date=2024-04-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2404.15346