A Novel Micro-Doppler Coherence Loss for Deep Learning Radar Applications
Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to thi...
Gespeichert in:
| Veröffentlicht in: | arXiv.org |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Ithaca
Cornell University Library, arXiv.org
12.04.2024
|
| Schlagworte: | |
| ISSN: | 2331-8422 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to this new domain with no adjustment made to the objective function. This practice results in a missed opportunity to encourage the model to prioritize features that are particularly relevant for micro-Doppler applications. Thus the paper introduces a micro-Doppler coherence loss, minimized when the normalized power of micro-Doppler oscillatory components between input and output is matched. The experiments conducted on real data show that the application of the introduced loss results in models more resilient to noise. |
|---|---|
| AbstractList | Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to this new domain with no adjustment made to the objective function. This practice results in a missed opportunity to encourage the model to prioritize features that are particularly relevant for micro-Doppler applications. Thus the paper introduces a micro-Doppler coherence loss, minimized when the normalized power of micro-Doppler oscillatory components between input and output is matched. The experiments conducted on real data show that the application of the introduced loss results in models more resilient to noise. |
| Author | Michie, Craig Clemente, Carmine Tachtatzis, Christos Andonovic, Ivan Czerkawski, Mikolaj Ilioudis, Christos |
| Author_xml | – sequence: 1 givenname: Mikolaj surname: Czerkawski fullname: Czerkawski, Mikolaj – sequence: 2 givenname: Christos surname: Ilioudis fullname: Ilioudis, Christos – sequence: 3 givenname: Carmine surname: Clemente fullname: Clemente, Carmine – sequence: 4 givenname: Craig surname: Michie fullname: Michie, Craig – sequence: 5 givenname: Ivan surname: Andonovic fullname: Andonovic, Ivan – sequence: 6 givenname: Christos surname: Tachtatzis fullname: Tachtatzis, Christos |
| BookMark | eNotjctKw0AUQAdRsNZ-gLsB14k388pkGVIfhagg3Zeb5I6mhJk40xY_34KuzuZwzg279METY3cF5MpqDQ8Yf8ZTLhSovNBSmQu2EFIWmVVCXLNVSnsAEKYUWssF29T8LZxo4q9jH0O2DvM8UeRN-KJIvifehpS4C5GviWbeEkY_-k_-gQNGXp_tscfDGHy6ZVcOp0Srfy7Z9ulx27xk7fvzpqnbDLWATJSGXAUDKDBO2s51tjOVdIhGaDdY0qUc0CiHGp1ThbUdDVQhDs52hUa5ZPd_2TmG7yOlw24fjtGfjzsJSldloQDkL_DEUAc |
| ContentType | Paper |
| Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.48550/arxiv.2404.15346 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| ID | FETCH-LOGICAL-a520-276ef90d0406f38bfb8b693faa625fd8e573da64fa5aff4188bede9aadf8b15a3 |
| IEDL.DBID | BENPR |
| IngestDate | Mon Jun 30 09:19:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a520-276ef90d0406f38bfb8b693faa625fd8e573da64fa5aff4188bede9aadf8b15a3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/3045971400?pq-origsite=%requestingapplication% |
| PQID | 3045971400 |
| PQPubID | 2050157 |
| ParticipantIDs | proquest_journals_3045971400 |
| PublicationCentury | 2000 |
| PublicationDate | 20240412 |
| PublicationDateYYYYMMDD | 2024-04-12 |
| PublicationDate_xml | – month: 04 year: 2024 text: 20240412 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2024 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8663673 |
| SecondaryResourceType | preprint |
| Snippet | Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| SubjectTerms | Coherence Deep learning |
| Title | A Novel Micro-Doppler Coherence Loss for Deep Learning Radar Applications |
| URI | https://www.proquest.com/docview/3045971400 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UNPHkOz6Q9OC1wO623e7JoEAkEbJBDngis9vWkBgWFyT-fKfroiYmXry16aXpY-ab1zeEXAueeKCUYR6ifcZtIBhIDQzfhvAVgNA2LZpNhMOhmkyiuHS4Lcu0yo1MLAS1zlLnI2-6iF7k2OVaN4tX5rpGuehq2UJjm1QdUxmvkOptdxiPvrwsvgwRMwef4cyCvKsJ-fts3UBFxhv427n8JYQLzdLb_--eDkg1hoXJD8mWmR-R3SKjM10ek36bDrO1eaEDl3LHOhnCTZNTV45RFPjRB1SPFCEr7RizoCXP6jMdgYactn_EtU_IuNcd392zsm8CA4HGoB9KY6OWxu8pbaASm6hERoEFQFvHamVEGGiQ3IIAa7mnVGK0iQC0VYknIDgllXk2N2eEhoi_EiuFjqTiXJsErTUvwiHeu6-sPCe1zcFMy7e_nH6fysXfy5dkz0eIwArmxBqprPI3c0V20vVqtszr5VXWXTbmI87i_iB--gAT5qxB |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60VfTkGx9V96DHVZPsbjYHEbFKi7WI9uCtTLq7IkhbU636o_yPzq6tCoI3D94CgRAyX775ZucFsCNFHqHWlkek9rlwieSoDHLChow1ojSuE5ZNpM2mvrnJLifgbdwL48sqx5wYiNr0Ov6MfN9n9DI_Xe7gqP_A_dYon10dr9D4gMW5fX2mkG1wWK-SfXfj-Oy0dVLjo60CHCWFSnGqrMsODIFXuUTnLte5yhKHSJGAM9rKNDGohEOJzolI69wamyEap_NIYkKPnYSy8OQfKgWvP490YpWSQE8-cqdhUtg-Fi93wz3ymmKPqEWoH4wf3NjZ3D_7APNQvsS-LRZgwnYXYTpUq3YGS1A_Zs3e0N6zC19OyKs9ktK2YL7VJDQvsga5fkZynFWt7bPRDNlbdoUGC3b8LWe_DK2_ePkVKHV7XbsKLCVtmTslTaa0EMbmFIlGGV0SpmPt1BpUxnZoj_7rQfvLCOu_396GmVrrotFu1JvnGzAbkxTiYUJkBUqPxZPdhKnO8PFuUGwFDDFo_7HJ3gH8wQel |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Micro-Doppler+Coherence+Loss+for+Deep+Learning+Radar+Applications&rft.jtitle=arXiv.org&rft.au=Czerkawski%2C+Mikolaj&rft.au=Ilioudis%2C+Christos&rft.au=Clemente%2C+Carmine&rft.au=Michie%2C+Craig&rft.date=2024-04-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2404.15346 |