An inverse acoustic-elastic interaction problem with phased or phaseless far-field data

Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper concerns an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org
Hauptverfasser: Dong, Heping, Lai, Jun, Li, Peijun
Format: Paper
Sprache:Englisch
Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.07.2019
Schlagworte:
ISSN:2331-8422
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper concerns an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to establish the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nystr\"{o}m-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is also proposed for the phaseless inverse problem. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed methods.
AbstractList Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper concerns an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to establish the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nystr\"{o}m-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is also proposed for the phaseless inverse problem. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed methods.
Author Lai, Jun
Li, Peijun
Dong, Heping
Author_xml – sequence: 1
  givenname: Heping
  surname: Dong
  fullname: Dong, Heping
– sequence: 2
  givenname: Jun
  surname: Lai
  fullname: Lai, Jun
– sequence: 3
  givenname: Peijun
  surname: Li
  fullname: Li, Peijun
BookMark eNotjkFLw0AUhBdRsNb-AG8LnlPf7stms8dS1AoFLwWP5WXzlqbEpO4m1Z9vpJ6-gRlm5k5cd33HQjwoWOalMfBE8ac5L5UDuwSjc3clZhpRZWWu9a1YpHQEAF1YbQzOxMeqk0135phYku_HNDQ-45b-OBkDR_JD03fyFPuq5U_53QwHeTpQ4lr28aJaTkkGillouK1lTQPdi5tAbeLFP-di9_K8W2-y7fvr23q1zchoyLR2iksgssoGQCqQnEFb25q9B5NXgRjJF0XAIjiFWDqfQx3clK1UcDgXj5fa6d7XyGnYH_sxdtPiXmtTYG7AAv4C-otVXA
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1907.05249
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-a520-2291e80aa717f03a63a9537d7decc054bfae3ac66f36f913389c40df903ab1f93
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:21:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-2291e80aa717f03a63a9537d7decc054bfae3ac66f36f913389c40df903ab1f93
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2256345070?pq-origsite=%requestingapplication%
PQID 2256345070
PQPubID 2050157
ParticipantIDs proquest_journals_2256345070
PublicationCentury 2000
PublicationDate 20190710
PublicationDateYYYYMMDD 2019-07-10
PublicationDate_xml – month: 07
  year: 2019
  text: 20190710
  day: 10
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6931053
SecondaryResourceType preprint
Snippet Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Acoustics
Boundary integral method
Boundary value problems
Elastic scattering
Far fields
Helmholtz equations
Integral equations
Inverse problems
Nonlinear equations
Numerical analysis
Numerical methods
Plane waves
Robustness (mathematics)
Well posed problems
Title An inverse acoustic-elastic interaction problem with phased or phaseless far-field data
URI https://www.proquest.com/docview/2256345070
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgBYmJb_FRKg-spqmdOPaEALWCgSqCSpSpOjuOqFSlJSkVP59zmsKAxMKURMkQ2cm7d-fne4RchrEVXQ6SSZsaFgrLGRgOTAkjHYAyoGxlNhEPBmo00kldcCtrWeUaEyugTmfW18g7-N1JESJ7Ca7n78y7RvnV1dpCY5M0faeysEGat71B8vRdZeEyRs4sVsuZVfOuDhSfk-UVxkHfspOH-hcIV5Glv_vfd9ojzQTmrtgnGy4_INuVotOWh-TlJqeT3IsuHEXUq0y7mEOujEfqm0QUqy0NtLaUob4iS-dvGNVSOitWZ1PEQZpBwSqhG_Vy0iMy7PeGd_esdlFgEGFqyLnuOhUAYN6WBQKkAB2JOI1TnDzkayYDJ8BKmQmZaZ-xahsGaabxWdPNtDgmjXyWuxNCA2UspksGuI1Ch7E-clxZkNykSKOkOiWt9TCN6z-hHP-M0dnft8_JDpIRv6MKQ0OLNBbFh7sgW3a5mJRFu57YttdmPuNV8vCYvH4Bb6iyWA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDI6mDQQn3uIxIAc4hnVJl6YHhBAwbdpDO0xinCYnTcUk1I12DPhR_EecboMDEjcOnFqpvbh2bX-O7Y-QMz8wospBMmkizXxhOAPNgSmhpQVQGpTJySaCblcNBmGvQD6WszCurXLpE3NHHY2Nq5FX0O6k8DF78a4mz8yxRrnT1SWFxtwsWvb9FSFbdtm8Rf2ec16_69802IJVgEENoRLnYdUqDwBxTOwJkALCmgiiIEJhMH_RMVgBRspYyDh0CC40vhfFIb6rq7HbvYQev-SjrasiKfWand7DV1GHywBTdDE_Pc13hVUgfRvNLjDsug2h3A9_-Pw8kNU3_tkn2ETRYWLTLVKwyTZZzftVTbZD7q8TOkpcS4ml6NNzSjJmEQnglboVGOl8YIMuCHOoqzfTySPG7IiO0_ndE3p5GkPK8jY-6ppld0n_L0TZI8VknNh9Qj2lDYJBDdzUfIuZTM1yZUByHWGSKNUBKS-1Mlz859nwWyWHvz8-JWuNfqc9bDe7rSOyjmmXmx3DIFgmxWn6Yo_JiplNR1l6srApSoZ_rMJPvRkLnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inverse+acoustic-elastic+interaction+problem+with+phased+or+phaseless+far-field+data&rft.jtitle=arXiv.org&rft.au=Dong%2C+Heping&rft.au=Lai%2C+Jun&rft.au=Li%2C+Peijun&rft.date=2019-07-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1907.05249