The Stretch - Length Tradeoff in Geometric Networks: Average Case and Worst Case Study

Consider a network linking the points of a rate-\(1\) Poisson point process on the plane. Write \(\Psi^{\mbox{ave}}(s)\) for the minimum possible mean length per unit area of such a network, subject to the constraint that the route-length between every pair of points is at most \(s\) times the Eucli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Aldous, David, Lando, Tamar
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 09.04.2014
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Consider a network linking the points of a rate-\(1\) Poisson point process on the plane. Write \(\Psi^{\mbox{ave}}(s)\) for the minimum possible mean length per unit area of such a network, subject to the constraint that the route-length between every pair of points is at most \(s\) times the Euclidean distance. We give upper and lower bounds on the function \(\Psi^{\mbox{ave}}(s)\), and on the analogous "worst-case" function \(\Psi^{\mbox{worst}}(s)\) where the point configuration is arbitrary subject to average density one per unit area. Our bounds are numerically crude, but raise the question of whether there is an exponent \(\alpha\) such that each function has \(\Psi(s) \asymp (s-1)^{-\alpha}\) as \(s \downarrow 1\).
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1404.2653