Machine Learning in Epidemiology and Health Outcomes Research

Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annual review of public health Ročník 41; s. 21
Hlavní autori: Wiemken, Timothy L, Kelley, Robert R
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 02.04.2020
Predmet:
ISSN:1545-2093, 1545-2093
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.
AbstractList Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.
Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.
Author Wiemken, Timothy L
Kelley, Robert R
Author_xml – sequence: 1
  givenname: Timothy L
  surname: Wiemken
  fullname: Wiemken, Timothy L
  email: timothy.wiemken@health.slu.edu
  organization: Center for Health Outcomes Research, Saint Louis University, Saint Louis, Missouri 63104, USA; email: timothy.wiemken@health.slu.edu
– sequence: 2
  givenname: Robert R
  surname: Kelley
  fullname: Kelley, Robert R
  email: rkelley@bellarmine.edu
  organization: Department of Computer Science, Bellarmine University, Louisville, Kentucky 40205, USA; email: rkelley@bellarmine.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31577910$$D View this record in MEDLINE/PubMed
BookMark eNpNj81LwzAYxoNM3If-C5LjLtE3adIsBw8yNidMBqLn8qbJ1kqb1qYV9t87dIKn5zn8eD6mZBSa4AmZc7jjXKb3GMLQ-S_WDrYqPFZ9wUAC54aBkTLRF2TClVRMgElG__yYTGP8AAAjVHpFxglXWhsOE_LwgnlRBk-3HrtQhgMtA121pfN12VTN4UgxOLr56aK7oc-b2kf66uMJz4trcrnHKvqbs87I-3r1ttyw7e7pefm4Zai47hnXViykA2Ot51Lq1KLKc-XEaYNEJRILWmtI0YjE7Z10DnNrnMUUUNg9ihmZ_-a2XfM5-NhndRlzX1UYfDPETCQAyqiFSk_o7RkdbO1d1nZljd0x-7ssvgGe92Be
CitedBy_id crossref_primary_10_1016_j_watres_2024_121415
crossref_primary_10_1111_ceo_14310
crossref_primary_10_1097_MD_0000000000036612
crossref_primary_10_1371_journal_pcbi_1011351
crossref_primary_10_1186_s12911_025_03155_9
crossref_primary_10_3390_pathogens12060786
crossref_primary_10_3389_fpsyg_2025_1601723
crossref_primary_10_3390_ijerph21030314
crossref_primary_10_3390_jcm12020705
crossref_primary_10_7189_jogh_14_04088
crossref_primary_10_1371_journal_pcbi_1012797
crossref_primary_10_1016_j_scs_2024_105785
crossref_primary_10_3390_ph16070911
crossref_primary_10_1016_j_asoc_2022_108887
crossref_primary_10_3389_fdgth_2023_1187578
crossref_primary_10_3389_fcvm_2022_959649
crossref_primary_10_1016_j_jad_2024_01_095
crossref_primary_10_1038_s41598_023_30348_x
crossref_primary_10_1016_j_scitotenv_2024_172387
crossref_primary_10_1016_j_ssci_2023_106381
crossref_primary_10_3390_biomedinformatics2010012
crossref_primary_10_3389_fpsyt_2021_738466
crossref_primary_10_2196_59916
crossref_primary_10_1177_20552076231178577
crossref_primary_10_36930_40340408
crossref_primary_10_1017_S1368980021004262
crossref_primary_10_3390_microorganisms12112249
crossref_primary_10_1080_13658816_2024_2443757
crossref_primary_10_1186_s12942_023_00343_6
crossref_primary_10_3390_cancers14164012
crossref_primary_10_12688_healthopenres_13748_2
crossref_primary_10_3389_fdata_2024_1469981
crossref_primary_10_1007_s11063_021_10491_0
crossref_primary_10_1161_CIRCHEARTFAILURE_121_008297
crossref_primary_10_1093_advances_nmac103
crossref_primary_10_1097_EDE_0000000000001433
crossref_primary_10_35772_ghm_2025_01061
crossref_primary_10_3389_fnut_2021_669155
crossref_primary_10_1109_ACCESS_2021_3091655
crossref_primary_10_1038_s41598_024_60097_4
crossref_primary_10_1186_s12889_024_18759_5
crossref_primary_10_1088_1361_6420_abc530
crossref_primary_10_1016_j_prevetmed_2022_105706
crossref_primary_10_1007_s11071_023_08632_2
crossref_primary_10_1186_s44167_024_00045_9
crossref_primary_10_1016_j_jmbbm_2024_106495
crossref_primary_10_1016_j_parint_2025_103140
crossref_primary_10_1038_s41598_024_51604_8
crossref_primary_10_1093_icb_icab188
crossref_primary_10_1038_s41398_021_01496_3
crossref_primary_10_3389_ijph_2021_614296
crossref_primary_10_1089_end_2023_0703
crossref_primary_10_2196_35114
crossref_primary_10_1016_j_ecoenv_2025_118457
crossref_primary_10_1016_j_agrcom_2025_100089
crossref_primary_10_1016_j_jval_2024_06_005
crossref_primary_10_3390_ijerph21050635
crossref_primary_10_1016_j_drugalcdep_2021_109143
crossref_primary_10_1186_s13071_023_06001_x
crossref_primary_10_1093_bioadv_vbae051
crossref_primary_10_1016_j_cbi_2024_110945
crossref_primary_10_3390_ijerph20010775
crossref_primary_10_1186_s12889_025_22077_9
crossref_primary_10_1038_s41598_024_61397_5
crossref_primary_10_1016_j_compag_2024_109693
crossref_primary_10_1016_j_ijmedinf_2024_105771
crossref_primary_10_4103_ijph_ijph_296_23
crossref_primary_10_1016_j_actbio_2022_02_027
crossref_primary_10_1080_00015385_2023_2198937
crossref_primary_10_1016_j_swevo_2025_102128
crossref_primary_10_1093_aje_kwad020
crossref_primary_10_3390_microorganisms10122358
crossref_primary_10_1093_clinchem_hvad217
crossref_primary_10_1186_s12982_024_00306_7
crossref_primary_10_3390_ijerph182312288
crossref_primary_10_1080_1744666X_2024_2359019
crossref_primary_10_4178_epih_e2024044
crossref_primary_10_1371_journal_pone_0321268
crossref_primary_10_1080_20565623_2025_2528523
crossref_primary_10_3389_fmed_2025_1500049
crossref_primary_10_1007_s10653_023_01820_4
crossref_primary_10_3389_fcimb_2025_1550933
crossref_primary_10_2196_49643
crossref_primary_10_2196_34717
crossref_primary_10_1016_j_ajic_2020_09_009
crossref_primary_10_1007_s40471_025_00359_5
crossref_primary_10_1016_j_scitotenv_2023_164660
crossref_primary_10_1177_07334648251344353
crossref_primary_10_3390_vaccines9010028
crossref_primary_10_1038_s41598_022_14632_w
crossref_primary_10_3390_ani13091494
crossref_primary_10_1186_s13195_023_01357_9
crossref_primary_10_1007_s10278_024_01015_y
crossref_primary_10_1016_j_annepidem_2024_12_015
crossref_primary_10_3389_fgene_2021_779455
crossref_primary_10_3390_data9010003
crossref_primary_10_1016_j_annepidem_2024_12_016
crossref_primary_10_1186_s12879_021_06812_2
crossref_primary_10_3389_fnagi_2022_977034
crossref_primary_10_1007_s10853_024_10276_5
crossref_primary_10_1016_j_comppsych_2025_152603
crossref_primary_10_1016_j_diabres_2024_111897
crossref_primary_10_3389_ijph_2024_1607396
crossref_primary_10_2147_CIA_S400887
crossref_primary_10_7759_cureus_56472
crossref_primary_10_1016_j_healthplace_2020_102496
crossref_primary_10_3389_fpsyt_2025_1511966
crossref_primary_10_1016_j_annepidem_2025_07_024
crossref_primary_10_1186_s12877_022_03576_5
crossref_primary_10_4081_gh_2025_1386
crossref_primary_10_1038_s41467_025_58527_6
crossref_primary_10_1016_j_jclepro_2021_125932
crossref_primary_10_3389_frai_2025_1538807
crossref_primary_10_1186_s12967_020_02658_5
crossref_primary_10_3390_ijerph17197271
crossref_primary_10_7189_jogh_15_04065
crossref_primary_10_1016_j_socscimed_2021_114486
crossref_primary_10_1371_journal_pone_0253302
crossref_primary_10_1186_s12874_024_02187_5
crossref_primary_10_1371_journal_pntd_0011047
crossref_primary_10_1371_journal_pone_0250832
crossref_primary_10_3390_antibiotics13100996
crossref_primary_10_1007_s00330_021_08214_z
crossref_primary_10_1088_1402_4896_ac807c
crossref_primary_10_2196_42832
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1146/annurev-publhealth-040119-094437
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1545-2093
ExternalDocumentID 31577910
Genre Journal Article
GroupedDBID ---
-QD
-QH
-~X
..I
0R~
1KX
36B
4.4
51A
5FA
5FB
5FC
5FD
5FE
5FF
5FG
5GY
5RE
6J9
85S
8NG
AABJL
AAFWJ
AAGWO
AAKOE
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAVPX
AAWJP
AAWTL
AAXSQ
AAYIS
AAZCL
ABBTB
ABDOG
ABGCZ
ABGRM
ABIPL
ABIVO
ABKGM
ABMRD
ABZNY
ACAHA
ACDVT
ACGFO
ACGFS
ACHQT
ACJYF
ACKHT
ACMXS
ACNCT
ACPHO
ACPRK
ACQCJ
ACQLW
ACRLM
ACSOE
ADGWB
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AEWNI
AFCZG
AFERR
AFKDQ
AFKEJ
AFONB
AFRAH
AHIXL
AHKZM
AHMBA
AHVNO
AIDEK
AIJFW
AJAAW
AJOTX
ALAFQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AONFT
AOUBY
AQQLW
B9D
B9E
B9F
B9G
B9H
B9L
B9M
B9N
BCFVH
BJPMW
BMYRD
BVIZK
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EMB
F-Q
F-S
F-V
F-X
F-Y
F-Z
F.1
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FW-
FXG
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
GURLG
H13
HZ~
J1V
M22
N9A
NPM
O9-
OK1
P0P
P2P
RAR
RAV
UPT
WH7
XZL
YSK
ZYWBE
~KM
7X8
RIG
TUS
ID FETCH-LOGICAL-a517t-17b284d09bbe14476ba5cc5d27914a523b077706a923dfd4ddacb9dba60a2bfa2
IEDL.DBID 7X8
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524457700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-2093
IngestDate Mon Sep 29 06:17:58 EDT 2025
Mon Jul 21 05:28:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords biostatistics
deep learning
treatment effects
walkthrough
predictive modeling
artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a517t-17b284d09bbe14476ba5cc5d27914a523b077706a923dfd4ddacb9dba60a2bfa2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.annualreviews.org/content/journals/10.1146/annurev-publhealth-040119-094437
PMID 31577910
PQID 2300595856
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2300595856
pubmed_primary_31577910
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of public health
PublicationTitleAlternate Annu Rev Public Health
PublicationYear 2020
SSID ssj0009256
Score 2.6453853
SecondaryResourceType review_article
Snippet Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 21
SubjectTerms Epidemiologic Methods
Epidemiologic Research Design
Humans
Machine Learning
Outcome Assessment, Health Care - methods
Title Machine Learning in Epidemiology and Health Outcomes Research
URI https://www.ncbi.nlm.nih.gov/pubmed/31577910
https://www.proquest.com/docview/2300595856
Volume 41
WOSCitedRecordID wos000524457700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB3UFRHE74_1iwgevATbNG02JxHZxYvrHhT2VpIm0b10V7sr-O-dtCl7EgQvPbVlCC_Jm8nkPYBrGVnjpFJUulhSnji_DvIezbjJfHOTV1mqzSbEcNgbj-UoFNyq0FbZron1Qm2mha-R3zKvqy6R3GZ3sw_qXaP86Wqw0FiFToJUxqNajJdq4ZLV7q2eJSAaZLIBN0EdtzV5oV5MurlxSBHOsb_RIzlPxO-Es954Bjv_DXkXtgPlJPcNRvZgxZb7sNXU60hzDekAfEn6HRknCYKrb2RSkv7SPvabqNKEt8nzYo4R2Iq0fXuH8Drovzw80mCtQFUaizmNhcZ9yURSa4splci0SosiNUzImCtMTnUkhIgyhfzPOMONUYWWRqssUkw7xY5grZyW9gSI0XFaKIu_cZZrpmSmo8QUyC2c0wiALly1o5MjdP15hCrtdFHly_HpwnEzxPms0djIkzgVGEt0-oevz2CT-SzY99Owc-g4nLj2AtaLr_mk-rysMYHP4ejpB6crwgc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+in+Epidemiology+and+Health+Outcomes+Research&rft.jtitle=Annual+review+of+public+health&rft.au=Wiemken%2C+Timothy+L&rft.au=Kelley%2C+Robert+R&rft.date=2020-04-02&rft.eissn=1545-2093&rft.volume=41&rft.spage=21&rft_id=info:doi/10.1146%2Fannurev-publhealth-040119-094437&rft_id=info%3Apmid%2F31577910&rft_id=info%3Apmid%2F31577910&rft.externalDocID=31577910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2093&client=summon