Machine Learning in Epidemiology and Health Outcomes Research
Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough...
Uložené v:
| Vydané v: | Annual review of public health Ročník 41; s. 21 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
02.04.2020
|
| Predmet: | |
| ISSN: | 1545-2093, 1545-2093 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models. |
|---|---|
| AbstractList | Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models. Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models. |
| Author | Wiemken, Timothy L Kelley, Robert R |
| Author_xml | – sequence: 1 givenname: Timothy L surname: Wiemken fullname: Wiemken, Timothy L email: timothy.wiemken@health.slu.edu organization: Center for Health Outcomes Research, Saint Louis University, Saint Louis, Missouri 63104, USA; email: timothy.wiemken@health.slu.edu – sequence: 2 givenname: Robert R surname: Kelley fullname: Kelley, Robert R email: rkelley@bellarmine.edu organization: Department of Computer Science, Bellarmine University, Louisville, Kentucky 40205, USA; email: rkelley@bellarmine.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31577910$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LwzAYxoNM3If-C5LjLtE3adIsBw8yNidMBqLn8qbJ1kqb1qYV9t87dIKn5zn8eD6mZBSa4AmZc7jjXKb3GMLQ-S_WDrYqPFZ9wUAC54aBkTLRF2TClVRMgElG__yYTGP8AAAjVHpFxglXWhsOE_LwgnlRBk-3HrtQhgMtA121pfN12VTN4UgxOLr56aK7oc-b2kf66uMJz4trcrnHKvqbs87I-3r1ttyw7e7pefm4Zai47hnXViykA2Ot51Lq1KLKc-XEaYNEJRILWmtI0YjE7Z10DnNrnMUUUNg9ihmZ_-a2XfM5-NhndRlzX1UYfDPETCQAyqiFSk_o7RkdbO1d1nZljd0x-7ssvgGe92Be |
| CitedBy_id | crossref_primary_10_1016_j_watres_2024_121415 crossref_primary_10_1111_ceo_14310 crossref_primary_10_1097_MD_0000000000036612 crossref_primary_10_1371_journal_pcbi_1011351 crossref_primary_10_1186_s12911_025_03155_9 crossref_primary_10_3390_pathogens12060786 crossref_primary_10_3389_fpsyg_2025_1601723 crossref_primary_10_3390_ijerph21030314 crossref_primary_10_3390_jcm12020705 crossref_primary_10_7189_jogh_14_04088 crossref_primary_10_1371_journal_pcbi_1012797 crossref_primary_10_1016_j_scs_2024_105785 crossref_primary_10_3390_ph16070911 crossref_primary_10_1016_j_asoc_2022_108887 crossref_primary_10_3389_fdgth_2023_1187578 crossref_primary_10_3389_fcvm_2022_959649 crossref_primary_10_1016_j_jad_2024_01_095 crossref_primary_10_1038_s41598_023_30348_x crossref_primary_10_1016_j_scitotenv_2024_172387 crossref_primary_10_1016_j_ssci_2023_106381 crossref_primary_10_3390_biomedinformatics2010012 crossref_primary_10_3389_fpsyt_2021_738466 crossref_primary_10_2196_59916 crossref_primary_10_1177_20552076231178577 crossref_primary_10_36930_40340408 crossref_primary_10_1017_S1368980021004262 crossref_primary_10_3390_microorganisms12112249 crossref_primary_10_1080_13658816_2024_2443757 crossref_primary_10_1186_s12942_023_00343_6 crossref_primary_10_3390_cancers14164012 crossref_primary_10_12688_healthopenres_13748_2 crossref_primary_10_3389_fdata_2024_1469981 crossref_primary_10_1007_s11063_021_10491_0 crossref_primary_10_1161_CIRCHEARTFAILURE_121_008297 crossref_primary_10_1093_advances_nmac103 crossref_primary_10_1097_EDE_0000000000001433 crossref_primary_10_35772_ghm_2025_01061 crossref_primary_10_3389_fnut_2021_669155 crossref_primary_10_1109_ACCESS_2021_3091655 crossref_primary_10_1038_s41598_024_60097_4 crossref_primary_10_1186_s12889_024_18759_5 crossref_primary_10_1088_1361_6420_abc530 crossref_primary_10_1016_j_prevetmed_2022_105706 crossref_primary_10_1007_s11071_023_08632_2 crossref_primary_10_1186_s44167_024_00045_9 crossref_primary_10_1016_j_jmbbm_2024_106495 crossref_primary_10_1016_j_parint_2025_103140 crossref_primary_10_1038_s41598_024_51604_8 crossref_primary_10_1093_icb_icab188 crossref_primary_10_1038_s41398_021_01496_3 crossref_primary_10_3389_ijph_2021_614296 crossref_primary_10_1089_end_2023_0703 crossref_primary_10_2196_35114 crossref_primary_10_1016_j_ecoenv_2025_118457 crossref_primary_10_1016_j_agrcom_2025_100089 crossref_primary_10_1016_j_jval_2024_06_005 crossref_primary_10_3390_ijerph21050635 crossref_primary_10_1016_j_drugalcdep_2021_109143 crossref_primary_10_1186_s13071_023_06001_x crossref_primary_10_1093_bioadv_vbae051 crossref_primary_10_1016_j_cbi_2024_110945 crossref_primary_10_3390_ijerph20010775 crossref_primary_10_1186_s12889_025_22077_9 crossref_primary_10_1038_s41598_024_61397_5 crossref_primary_10_1016_j_compag_2024_109693 crossref_primary_10_1016_j_ijmedinf_2024_105771 crossref_primary_10_4103_ijph_ijph_296_23 crossref_primary_10_1016_j_actbio_2022_02_027 crossref_primary_10_1080_00015385_2023_2198937 crossref_primary_10_1016_j_swevo_2025_102128 crossref_primary_10_1093_aje_kwad020 crossref_primary_10_3390_microorganisms10122358 crossref_primary_10_1093_clinchem_hvad217 crossref_primary_10_1186_s12982_024_00306_7 crossref_primary_10_3390_ijerph182312288 crossref_primary_10_1080_1744666X_2024_2359019 crossref_primary_10_4178_epih_e2024044 crossref_primary_10_1371_journal_pone_0321268 crossref_primary_10_1080_20565623_2025_2528523 crossref_primary_10_3389_fmed_2025_1500049 crossref_primary_10_1007_s10653_023_01820_4 crossref_primary_10_3389_fcimb_2025_1550933 crossref_primary_10_2196_49643 crossref_primary_10_2196_34717 crossref_primary_10_1016_j_ajic_2020_09_009 crossref_primary_10_1007_s40471_025_00359_5 crossref_primary_10_1016_j_scitotenv_2023_164660 crossref_primary_10_1177_07334648251344353 crossref_primary_10_3390_vaccines9010028 crossref_primary_10_1038_s41598_022_14632_w crossref_primary_10_3390_ani13091494 crossref_primary_10_1186_s13195_023_01357_9 crossref_primary_10_1007_s10278_024_01015_y crossref_primary_10_1016_j_annepidem_2024_12_015 crossref_primary_10_3389_fgene_2021_779455 crossref_primary_10_3390_data9010003 crossref_primary_10_1016_j_annepidem_2024_12_016 crossref_primary_10_1186_s12879_021_06812_2 crossref_primary_10_3389_fnagi_2022_977034 crossref_primary_10_1007_s10853_024_10276_5 crossref_primary_10_1016_j_comppsych_2025_152603 crossref_primary_10_1016_j_diabres_2024_111897 crossref_primary_10_3389_ijph_2024_1607396 crossref_primary_10_2147_CIA_S400887 crossref_primary_10_7759_cureus_56472 crossref_primary_10_1016_j_healthplace_2020_102496 crossref_primary_10_3389_fpsyt_2025_1511966 crossref_primary_10_1016_j_annepidem_2025_07_024 crossref_primary_10_1186_s12877_022_03576_5 crossref_primary_10_4081_gh_2025_1386 crossref_primary_10_1038_s41467_025_58527_6 crossref_primary_10_1016_j_jclepro_2021_125932 crossref_primary_10_3389_frai_2025_1538807 crossref_primary_10_1186_s12967_020_02658_5 crossref_primary_10_3390_ijerph17197271 crossref_primary_10_7189_jogh_15_04065 crossref_primary_10_1016_j_socscimed_2021_114486 crossref_primary_10_1371_journal_pone_0253302 crossref_primary_10_1186_s12874_024_02187_5 crossref_primary_10_1371_journal_pntd_0011047 crossref_primary_10_1371_journal_pone_0250832 crossref_primary_10_3390_antibiotics13100996 crossref_primary_10_1007_s00330_021_08214_z crossref_primary_10_1088_1402_4896_ac807c crossref_primary_10_2196_42832 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1146/annurev-publhealth-040119-094437 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1545-2093 |
| ExternalDocumentID | 31577910 |
| Genre | Journal Article |
| GroupedDBID | --- -QD -QH -~X ..I 0R~ 1KX 36B 4.4 51A 5FA 5FB 5FC 5FD 5FE 5FF 5FG 5GY 5RE 6J9 85S 8NG AABJL AAFWJ AAGWO AAKOE AALHT AALUV AAOHI AAQMF AARJV AAVPX AAWJP AAWTL AAXSQ AAYIS AAZCL ABBTB ABDOG ABGCZ ABGRM ABIPL ABIVO ABKGM ABMRD ABZNY ACAHA ACDVT ACGFO ACGFS ACHQT ACJYF ACKHT ACMXS ACNCT ACPHO ACPRK ACQCJ ACQLW ACRLM ACSOE ADGWB ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AEWNI AFCZG AFERR AFKDQ AFKEJ AFONB AFRAH AHIXL AHKZM AHMBA AHVNO AIDEK AIJFW AJAAW AJOTX ALAFQ ALIPV ALMA_UNASSIGNED_HOLDINGS AMTJG AONFT AOUBY AQQLW B9D B9E B9F B9G B9H B9L B9M B9N BCFVH BJPMW BMYRD BVIZK CGR CS3 CUY CVF EBS ECM EIF EMB F-Q F-S F-V F-X F-Y F-Z F.1 F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FW- FXG GJQJI GLOEX GNDDA GOAVI GQXMV GURLG H13 HZ~ J1V M22 N9A NPM O9- OK1 P0P P2P RAR RAV UPT WH7 XZL YSK ZYWBE ~KM 7X8 RIG TUS |
| ID | FETCH-LOGICAL-a517t-17b284d09bbe14476ba5cc5d27914a523b077706a923dfd4ddacb9dba60a2bfa2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 139 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524457700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-2093 |
| IngestDate | Mon Sep 29 06:17:58 EDT 2025 Mon Jul 21 05:28:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | biostatistics deep learning treatment effects walkthrough predictive modeling artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a517t-17b284d09bbe14476ba5cc5d27914a523b077706a923dfd4ddacb9dba60a2bfa2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.annualreviews.org/content/journals/10.1146/annurev-publhealth-040119-094437 |
| PMID | 31577910 |
| PQID | 2300595856 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2300595856 pubmed_primary_31577910 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-02 |
| PublicationDateYYYYMMDD | 2020-04-02 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annual review of public health |
| PublicationTitleAlternate | Annu Rev Public Health |
| PublicationYear | 2020 |
| SSID | ssj0009256 |
| Score | 2.6453853 |
| SecondaryResourceType | review_article |
| Snippet | Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 21 |
| SubjectTerms | Epidemiologic Methods Epidemiologic Research Design Humans Machine Learning Outcome Assessment, Health Care - methods |
| Title | Machine Learning in Epidemiology and Health Outcomes Research |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31577910 https://www.proquest.com/docview/2300595856 |
| Volume | 41 |
| WOSCitedRecordID | wos000524457700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB3UFRHE74_1iwgevATbNG02JxHZxYvrHhT2VpIm0b10V7sr-O-dtCl7EgQvPbVlCC_Jm8nkPYBrGVnjpFJUulhSnji_DvIezbjJfHOTV1mqzSbEcNgbj-UoFNyq0FbZron1Qm2mha-R3zKvqy6R3GZ3sw_qXaP86Wqw0FiFToJUxqNajJdq4ZLV7q2eJSAaZLIBN0EdtzV5oV5MurlxSBHOsb_RIzlPxO-Es954Bjv_DXkXtgPlJPcNRvZgxZb7sNXU60hzDekAfEn6HRknCYKrb2RSkv7SPvabqNKEt8nzYo4R2Iq0fXuH8Drovzw80mCtQFUaizmNhcZ9yURSa4splci0SosiNUzImCtMTnUkhIgyhfzPOMONUYWWRqssUkw7xY5grZyW9gSI0XFaKIu_cZZrpmSmo8QUyC2c0wiALly1o5MjdP15hCrtdFHly_HpwnEzxPms0djIkzgVGEt0-oevz2CT-SzY99Owc-g4nLj2AtaLr_mk-rysMYHP4ejpB6crwgc |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+in+Epidemiology+and+Health+Outcomes+Research&rft.jtitle=Annual+review+of+public+health&rft.au=Wiemken%2C+Timothy+L&rft.au=Kelley%2C+Robert+R&rft.date=2020-04-02&rft.eissn=1545-2093&rft.volume=41&rft.spage=21&rft_id=info:doi/10.1146%2Fannurev-publhealth-040119-094437&rft_id=info%3Apmid%2F31577910&rft_id=info%3Apmid%2F31577910&rft.externalDocID=31577910 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2093&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2093&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2093&client=summon |