Iterative Methods in Combinatorial Optimization

With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and si...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Lau, Lap Chi, Ravi, R., Singh, Mohit
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Cambridge ; New York Cambridge University Press 18.04.2011
Vydání:1
Edice:Cambridge Texts in Applied Mathematics
Témata:
ISBN:9780521189439, 1107007518, 0521189438, 9781107007512
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
AbstractList With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows.
Author Lau, Lap Chi
Singh, Mohit
Ravi, R.
Author_xml – sequence: 1
  givenname: Lap Chi
  surname: Lau
  fullname: Lau, Lap Chi
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: R.
  surname: Ravi
  fullname: Ravi, R.
  organization: Carnegie Mellon University, Pennsylvania
– sequence: 3
  givenname: Mohit
  surname: Singh
  fullname: Singh, Mohit
  organization: McGill University, Montréal
BackLink https://cir.nii.ac.jp/crid/1130000797307228160$$DView record in CiNii
BookMark eNqF0UFLwzAUAOCITtzm7h53EMFDXV7SNMnRlakDZRfxWtImdXFdM5s6wV9vuw4FRcwhIeR7ebz3BuiodKVB6AzwFWDgk3i6kFxgBiA5B0YO0ODrIg7RaPdIAIQMqeyhAcEAGNOI0WPU5yTiNBQAJ2jk_QtuFiOUSeijybw2lart1owfTL102o9tOY7dOrWlql1lVTFebGq7th-NcuUp6uWq8Ga0P4fo6Wb2GN8F94vbeXx9HygGPOJBJKOQUJ0JwiAPaZZGTNCQgdCKcBYaqXOlQYVANKZCZ1IDw4amqQhzIHlOh-iy-1j5lXn3S1fUPtkWJnVu5ZOm3KY-TghwTv63331r7EVnN5V7fTO-TnYsM2VdqSKZTeNIghSigecdLK1NMtvuALTtHZectrkFRLhhtGOZWqeV1c8myVy1Tw04aaeX_JxeExX8ikrd3_4TniiPfQ
ContentType eBook
Book
Copyright Lap Chi Lau, R. Ravi, and Mohit Singh 2011
Copyright_xml – notice: Lap Chi Lau, R. Ravi, and Mohit Singh 2011
DBID RYH
DEWEY 518.26
DOI 10.1017/CBO9780511977152
DatabaseName CiNii Complete
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISBN 0511977158
9780511977152
1139081071
9781139081078
1107221773
9781107221772
Edition 1
ExternalDocumentID 9781107221772
9780511977152
EBC691988
BB05573107
10_1017_CBO9780511977152
GroupedDBID -G2
-VX
089
20A
38.
92K
A4J
AAAAZ
AABBV
AAHFW
ABARN
ABMFC
ABQPQ
ABZUC
ACCTN
ACLGV
ACNOG
ADCGF
ADQZK
ADVEM
AEDFS
AERYV
AEWAL
AEWQY
AGSJN
AHAWV
AIAQS
AIXPE
AJFER
AJXXZ
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
ANGWU
ASYWF
AZZ
BBABE
BFIBU
BJUTA
COBLI
COXPH
CYGLA
CZZ
DUGUG
EBACC
EBSCA
ECOWB
FH2
FVPQW
GEOUK
ICERG
IPICV
MYL
OLDIN
OTBUH
OZASK
OZBHS
PQQKQ
S2A
SACVX
XI1
ZXKUE
ABESS
ABMRC
AHWGJ
RYH
ID FETCH-LOGICAL-a51767-696423dc8251f43cb65834518da2754e9dfad1a412d038dc9d150e3bb84f12ff3
ISBN 9780521189439
1107007518
0521189438
9781107007512
IngestDate Wed Aug 20 03:37:09 EDT 2025
Tue Jan 21 09:44:32 EST 2025
Wed Dec 10 08:49:22 EST 2025
Fri Jun 27 00:29:22 EDT 2025
Fri Feb 21 02:35:48 EST 2025
Wed Sep 13 03:21:19 EDT 2023
IsPeerReviewed false
IsScholarly false
LCCN 2011003653
LCCallNum_Ident QA297.8 .L38 2011
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a51767-696423dc8251f43cb65834518da2754e9dfad1a412d038dc9d150e3bb84f12ff3
Notes Includes bibliographical references (p. 233-240) and index
OCLC 726734811
PQID EBC691988
PageCount 256
ParticipantIDs askewsholts_vlebooks_9781107221772
askewsholts_vlebooks_9780511977152
proquest_ebookcentral_EBC691988
nii_cinii_1130000797307228160
cambridge_corebooks_10_1017_CBO9780511977152
cambridge_cbo_10_1017_CBO9780511977152
PublicationCentury 2000
PublicationDate 20110418
2011
2012-06-05
2011-04-18
PublicationDateYYYYMMDD 2011-04-18
2011-01-01
2012-06-05
PublicationDate_xml – month: 04
  year: 2011
  text: 20110418
  day: 18
PublicationDecade 2010
PublicationPlace Cambridge ; New York
PublicationPlace_xml – name: Cambridge ; New York
– name: New York
PublicationSeriesTitle Cambridge Texts in Applied Mathematics
PublicationYear 2011
2012
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0000523591
ssib036171980
Score 2.3956594
Snippet With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual...
This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate...
SourceID askewsholts
proquest
nii
cambridge
SourceType Aggregation Database
Publisher
SubjectTerms Combinatorial optimization
COMPUTERS / General bisacsh
Iterative methods (Mathematics)
TableOfContents Cover -- Half-title -- Series-title -- Title -- Copyright -- Contents -- Preface -- Audience -- History -- Acknowledgments -- Dedications -- 1 Introduction -- 1.1 The assignment problem -- 1.2 Iterative algorithm -- 1.2.1 Contradiction proof idea: Lower bound &gt -- upper bound -- 1.2.2 Approximation algorithms for NP-hard problems -- 1.3 Approach outline -- 1.4 Context and applications of iterative rofinding -- 1.5 Book chapters overview -- 1.6 Notes -- 2 Preliminaries -- 2.1 Linear programming -- 2.1.1 Extreme point solutions to linear programs -- 2.1.1.1 Basic feasible solution -- 2.1.2 Algorithms for linear programming -- 2.1.3 Separation and optimization -- 2.1.4 Linear programming duality -- 2.1.4.1 Complementary slackness conditions -- 2.2 Graphs and digraphs -- 2.3 Submodular and supermodular functions -- 2.3.1 Submodularity -- 2.3.2 Supermodularity -- 2.3.3 Refinements -- 2.3.3.1 Minimizing submodular function -- Exercises -- 3 Matching and vertex cover in bipartite graphs -- 3.1 Matchings in bipartite graphs -- 3.1.1 Linear programming relaxation -- 3.1.2 Characterization of extreme point solutions -- 3.1.3 Iterative algorithm -- 3.1.4 Correctness and optimality -- 3.2 Generalized assignment problem -- 3.2.1 Linear programming relaxation -- 3.2.2 Characterization of extreme point solutions -- 3.2.3 Iterative algorithm -- 3.2.4 Correctness and performance guarantee -- 3.3 Maximum budgeted allocation -- 3.3.1 Linear programming relaxation -- 3.3.2 Characterization of extreme point solutions -- 3.3.3 An iterative 2-approximation algorithm -- 3.3.4 An iterative -approximation algorithm -- 3.3.5 Correctness and performance guarantee -- 3.4 Vertex cover in bipartite graphs -- 3.4.1 Linear programming relaxation -- 3.4.2 Characterization of extreme point solutions -- 3.4.3 Iterative algorithm -- 3.4.4 Correctness and optimality
8.4.2 Matroid intersection -- 8.4.3 Submodular flows -- 8.5 Notes -- Exercises -- 9 Matchings -- 9.1 Graph matching -- 9.1.1 Linear programming relaxation -- 9.1.2 Characterization of extreme point solutions -- 9.1.3 Iterative algorithm -- 9.1.4 Correctness and optimality -- 9.2 Hypergraph matching -- 9.2.1 Linear programming relaxation -- 9.2.2 Characterization of extreme point solutions -- 9.2.3 Iterative algorithm and local ratio method -- 9.2.4 Partial Latin square -- 9.3 Notes -- Exercises -- 10 Network design -- 10.1 Survivable network design problem -- 10.1.1 Linear programming relaxation -- 10.1.2 Characterization of extreme point solutions -- 10.1.3 Iterative algorithm -- 10.1.4 Correctness and performance guarantee -- 10.2 Connection to the traveling salesman problem -- 10.2.1 Linear programming relaxation -- 10.2.2 Characterization of extreme point solutions -- 10.2.3 Existence of edges with large fractional value -- 10.3 Minimum bounded degree Steiner networks -- 10.3.1 Linear programming relaxation -- 10.3.2 Characterization of extreme point solutions -- 10.3.3 Iterative algorithm -- 10.3.4 Correctness and performance guarantee -- 10.4 An additive approximation algorithm -- 10.4.1 Iterative algorithm -- 10.4.2 Correctness and performance guarantee -- 10.4.3 Steiner forests -- 10.5 Notes -- Exercises -- 11 Constrained optimization problems -- 11.1 Vertex cover -- 11.1.1 Linear programming relaxation -- 11.1.2 Characterization of extreme point solutions -- 11.1.3 Iterative algorithm -- 11.1.4 Correctness and performance guarantee -- 11.2 Partial vertex cover -- 11.2.1 Linear programming relaxation -- 11.2.2 Characterization of extreme point solutions -- 11.2.3 Iterative algorithm -- 11.2.4 Correctness and performance guarantee -- 11.3 Multicriteria spanning trees -- 11.3.1 Linear programming relaxation
3.5 Vertex cover and matching: duality -- 3.6 Notes -- Exercises -- 4 Spanning trees -- 4.1 Minimum spanning trees -- 4.1.1 Linear Programming Relaxation -- 4.1.2 Characterization of extreme point solutions -- 4.1.3 Uncrossing technique -- 4.1.4 Leaf-finding iterative algorithm -- 4.1.5 Correctness and optimality of leaf-finding algorithm -- 4.2 Iterative 1-edge-finding algorithm -- 4.2.1 Correctness and optimality of 1-edge-finding algorithm -- 4.3 Minimum bounded-degree spanning trees -- 4.3.1 Linear programming relaxation -- 4.3.2 Characterization of extreme point solutions -- 4.3.3 Leaf-finding iterative algorithm -- 4.3.4 Correctness and performance guarantee -- 4.4 An additive one approximation algorithm -- 4.4.1 Correctness and performance guarantee -- 4.5 Notes -- Exercises -- 5 Matroids -- 5.1 Preliminaries -- 5.2 Maximum weight basis -- 5.2.1 Linear programming formulation -- 5.2.2 Characterization of extreme point solutions -- 5.2.3 Iterative algorithm -- 5.2.4 Correctness and optimality -- 5.3 Matroid intersection -- 5.3.1 Linear programming relaxation -- 5.3.2 Characterization of extreme point solutions -- 5.3.3 Iterative algorithm -- 5.3.4 Correctness and optimality -- 5.4 Duality and min-max theorem -- 5.4.1 Dual of maximum weight basis -- 5.4.2 Dual of two matroid intersection -- 5.5 Minimum bounded degree matroid basis -- 5.5.1 Linear programming relaxation -- 5.5.2 Characterization of extreme point solutions -- 5.5.3 Iterative algorithm -- 5.5.4 Correctness and performance guarantee -- 5.5.5 Applications -- 5.6 k matroid intersection -- 5.6.1 Linear programming relaxation -- 5.6.2 Characterization of extreme point solutions -- 5.6.3 Iterative algorithm -- 5.6.4 Correctness and performance guarantee -- 5.7 Notes -- Exercises -- 6 Arborescence and rooted connectivity -- 6.1 Minimum cost arborescence
13.6.1 Linear programming relaxation
11.3.2 Characterization of extreme point solutions -- 11.3.3 Iterative algorithm -- 11.3.4 Correctness and performance guarantee -- 11.4 Notes -- Exercises -- 12 Cut problems -- 12.1 Triangle cover -- 12.1.1 Linear programming relaxation -- 12.1.2 Iterative algorithm -- 12.1.3 Correctness and performance guarantee -- 12.2 Feedback vertex set on bipartite tournaments -- 12.2.1 Linear programming relaxation -- 12.2.2 Iterative algorithm -- 12.2.3 Correctness and performance guarantee -- 12.3 Node multiway cut -- 12.3.1 Linear programming relaxation -- 12.3.2 Iterative algorithm -- 12.3.3 Correctness and performance guarantee -- 12.4 Notes -- Exercises -- 13 Iterative relaxation: Early and recent examples -- 13.1 A discrepancy theorem -- 13.1.1 Linear programming relaxation -- 13.1.2 Characterization of extreme point solutions -- 13.1.3 Iterative algorithm -- 13.1.4 Correctness and performance guarantee -- 13.2 Rearrangments of sums -- 13.2.1 Linear programming relaxation -- 13.2.2 Characterization of extreme point solutions -- 13.2.3 Iterative algorithm -- 13.2.4 Correctness and performance guarantee -- 13.3 Minimum cost circulation -- 13.3.1 Linear programming relaxation -- 13.3.2 Characterization of extreme point solutions -- 13.3.3 Iterative algorithm -- 13.3.4 Correctness and optimalit -- 13.4 Minimum cost unsplittable flow -- 13.4.1 Linear programming relaxation -- 13.4.2 Iterative algorithm -- 13.4.3 Correctness and performance guarantee -- 13.5 Bin packing -- 13.5.1 Linear programming relaxation -- 13.5.2 Characterization of extreme point solutions -- 13.5.3 Defining residual problems: Grouping and elimination -- 13.5.3.1 Linear grouping -- 13.5.3.2 Geometric grouping -- 13.5.3.3 Elimination of small items -- 13.5.4 Iterative algorithm -- 13.5.5 Correctness and performance guarantee -- 13.6 Iterative randomized rofinding: Steiner trees
6.1.1 Linear programming relaxation -- 6.1.2 Characterization of extreme point solutions -- 6.1.3 Iterative algorithm -- 6.1.4 Correctness and optimality -- 6.2 Minimum cost rooted k-connected subgraphs -- 6.2.1 Linear programming relaxation -- 6.2.2 Iterative algorithm -- 6.2.3 Characterization of extreme point solutions -- 6.2.4 Correctness and optimality -- 6.3 Minimum bounded degree arborescence -- 6.3.1 Linear programming relaxation -- 6.3.2 Characterization of extreme point solutions -- 6.3.3 Iterative algorithm -- 6.3.4 Correctness and performance guarantee -- 6.4 Additive performance guarantee -- 6.4.1 Iterative algorithm -- 6.4.2 Correctness and performance guarantee -- 6.5 Notes -- Exercises -- 7 Submodular flows and applications -- 7.1 The model and the main result -- 7.1.2 Generalizing to submodular functions -- 7.2 Primal integrality -- 7.2.2 Characterization of extreme point solutions -- 7.2.3 Iterative algorithm -- 7.2.4 Correctness and optimality -- 7.3 Dual integrality -- 7.4 Applications of submodular flows -- 7.4.1 Directed cut cover and feedback arc set -- 7.4.1.1 Feedback arc set indirected planar graphs -- 7.4.2 Polymatroid intersection -- 7.4.3 Graph orientation -- 7.5 Minimum bounded degree submodular flows -- 7.5.1 Linear Programming Relaxation -- 7.5.2 Characterization of extreme point solutions -- 7.5.3 Iterative algorithm -- 7.5.4 Correctness and performance guarantee -- 7.5.5 Applications -- 7.6 Notes -- Exercises -- 8 Network matrices -- 8.1 The model and main results -- 8.2 Primal integrality -- 8.2.1 Linear programming relaxation -- 8.2.3 Iterative algorithm -- 8.2.4 Correctness and optimality -- 8.3 Dual integrality -- 8.3.1 Linear programming relaxation -- 8.3.2 Characterization of extreme point solutions -- 8.3.3 Iterative algorithm -- 8.3.4 Correctness and optimality -- 8.4 Applications -- 8.4.1 Matroid
Title Iterative Methods in Combinatorial Optimization
URI http://dx.doi.org/10.1017/CBO9780511977152
https://doi.org/10.1017/CBO9780511977152?locatt=mode:legacy
https://cir.nii.ac.jp/crid/1130000797307228160
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=691988
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780511977152
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781107221772&uid=none
Volume v.Series Number 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZY4UAvwABRYBAhxIlCnG9fWxWQgA3BmHaLnNgRETSZmq7az-d5HS_zygBx4GK1qWVH71Pb7-djxp7HQVTERYGFpEoYKLxMsKRiOdW-zLCafKkNffHRh3R_Pzs-Fp_sHUWduU4gbZrs7Eyc_Feo8QxgU-nsP8A9DIoH-AzQ0QJ2tFsa8fDVZqMbgmTKBOqvhTaZrpgBti9Z1uQab7FBLG3l5ZCKI0_7AukTysu4iPtsTJz_8yvjZJBLuWwpxFM7roMvOPaMV-Zj-61eu_4DU0Xn-g-uLA1z0z96S5NqfDlxtYsr992erGk-OzBdKTSZ8p6ZdovNejYj0i_olOkO20kTmMvX3y4Ovr4f_GLkpo4Ft2XFZsrM3PCEvcmnGJFlTRrex_J2nf8e2Fg08YJvv8-YjWX3HYcHDpZ157JpQLNo6vqX89goGYe32YgKT-6wa7rZZbeseeDZzbfbZWOHO_Iuez3A7Vm4vbrxLsHtuXDfY0dvFofzd1N7-8VUxhySmSYCtmGoSiourqKwLKAshhEkoGSQxpEWqpKKy4gHyg8zVQoF5V6HWHhRxYOqCu-zUdM2-gHzEl1IGXIVkMYsBS8ED3QVFVxCgRZhMmHPHMHkmx8mUt_ll6T3h04k_QDGbYpOLwah5mXR5n0WYZpvYzFhL52O7coO9vvuewAoL2tqOcVggbbA8YR5M574E_b0HLrcDGVzm_PFbJ4ILrLs4V9GeMRuXiyPx2y0Xp3qPXaj3KzrbvXE_k1_ArQQbsk
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Iterative+methods+in+combinatorial+optimization&rft.au=Lau%2C+Lap+Chi&rft.au=Ravi%2C+R.+%28Ramamoorthi%29&rft.au=Singh%2C+Mohit&rft.date=2011-01-01&rft.pub=Cambridge+University+Press&rft.isbn=9780521189439&rft_id=info:doi/10.1017%2FCBO9780511977152&rft.externalDocID=BB05573107
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805211%2F89439%2Fcover%2F9780521189439.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97805119%2F9780511977152.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811072%2F9781107221772.jpg