Minimum Model Semantics for Extensional Higher-order Logic Programming with Negation

Extensional higher-order logic programming has been introduced as a generalization of classical logic programming. An important characteristic of this paradigm is that it preserves all the well-known properties of traditional logic programming. In this paper we consider the semantics of negation in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:arXiv.org
Hlavní autori: Charalambidis, Angelos, Ésik, Zoltán, Rondogiannis, Panos
Médium: Paper
Jazyk:English
Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 15.05.2014
Predmet:
ISSN:2331-8422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Extensional higher-order logic programming has been introduced as a generalization of classical logic programming. An important characteristic of this paradigm is that it preserves all the well-known properties of traditional logic programming. In this paper we consider the semantics of negation in the context of the new paradigm. Using some recent results from non-monotonic fixed-point theory, we demonstrate that every higher-order logic program with negation has a unique minimum infinite-valued model. In this way we obtain the first purely model-theoretic semantics for negation in extensional higher-order logic programming. Using our approach, we resolve an old paradox that was introduced by W. W. Wadge in order to demonstrate the semantic difficulties of higher-order logic programming.
Bibliografia:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1405.3792