Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle
Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at...
Saved in:
| Published in: | mBio Vol. 13; no. 3; p. e0078322 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Society for Microbiology
28.06.2022
|
| Subjects: | |
| ISSN: | 2150-7511, 2161-2129, 2150-7511 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints.
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by
Streptomyces
, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level.
IMPORTANCE
Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria
Escherichia coli
and
Streptomyces venezuelae
, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by
Streptomyces
. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages. |
|---|---|
| AbstractList | In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages. Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces , are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae , our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces . Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages. ABSTRACT In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by , are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by . Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages. |
| Author | Hardy, Aël Hünnefeld, Max Gätgens, Cornelia Marienhagen, Jan Milke, Lars Kever, Larissa Wiechert, Johanna Wittmann, Johannes Luthe, Tom Frunzke, Julia Moraru, Cristina |
| Author_xml | – sequence: 1 givenname: Larissa surname: Kever fullname: Kever, Larissa organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 2 givenname: Aël surname: Hardy fullname: Hardy, Aël organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 3 givenname: Tom surname: Luthe fullname: Luthe, Tom organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 4 givenname: Max surname: Hünnefeld fullname: Hünnefeld, Max organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 5 givenname: Cornelia surname: Gätgens fullname: Gätgens, Cornelia organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 6 givenname: Lars surname: Milke fullname: Milke, Lars organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 7 givenname: Johanna surname: Wiechert fullname: Wiechert, Johanna organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany – sequence: 8 givenname: Johannes surname: Wittmann fullname: Wittmann, Johannes organization: Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany – sequence: 9 givenname: Cristina surname: Moraru fullname: Moraru, Cristina organization: Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany – sequence: 10 givenname: Jan surname: Marienhagen fullname: Marienhagen, Jan organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany, Institute of Biotechnology, RWTH Aachen University, Aachen, Germany – sequence: 11 givenname: Julia orcidid: 0000-0001-6209-7950 surname: Frunzke fullname: Frunzke, Julia organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35506667$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks9vFCEUx4mpse3ao1cziRdjMpUfA8xcTLabVjdpool6Jgwws6wMrMCa7H8v22112ygXHvDhy_s-3jk48cEbAF4heIkQbt9PvQ2XEPKW1Bg_A2cYUVhzitDJUXwKLlJawzIIQS2BL8ApoRQyxvgZUPPJ-jC6nQrJalPNfbZFNFuVqqVflThXX1ZyNGU1GJVt8FW_q65cUD-sHyvpq2sZ3a76ms2mCkOVV8foYqeceQmeD9Ilc3E_z8D3m-tvi0_17eePy8X8tpYUsVzjBlHNYfEFudS8NQaxVjM4YA7loFs28J4galrS4RZhyk3fEV0cDabpmoGRGVgedHWQa7GJdpJxJ4K04m4jxFHIWJw5I3Svie67BkMOG0yN1Ax1qtN9Ux4nihetDwetzbafjFbG5yjdI9HHJ96uxBh-iQ6X9EqpZ-DtvUAMP7cmZTHZpIxz0puwTQIz2jFIOGsK-uYJug7b6EupBMEMIcQZwoV6d6BkmvBfAkGxbwWxbwVx1woC7-HXx-n_yfvh4wtADoCKIaVoBqFslvs_K26s-69s_eTWg_C_-d8Oos-z |
| CitedBy_id | crossref_primary_10_1371_journal_pbio_3002725 crossref_primary_10_1016_j_cbpa_2024_102566 crossref_primary_10_1038_s41467_024_45068_7 crossref_primary_10_3390_antibiotics11111566 crossref_primary_10_1007_s00408_024_00700_7 crossref_primary_10_1021_jacs_3c01874 crossref_primary_10_1016_j_tim_2023_05_002 crossref_primary_10_1016_j_cej_2024_150276 crossref_primary_10_1128_spectrum_00663_24 crossref_primary_10_1016_j_virusres_2022_198909 crossref_primary_10_1128_jb_00153_23 crossref_primary_10_3390_ph16050744 crossref_primary_10_1371_journal_pbio_3003065 crossref_primary_10_1128_spectrum_02435_24 crossref_primary_10_3390_ijms25094929 crossref_primary_10_3390_v15020588 crossref_primary_10_1016_j_mib_2022_102257 crossref_primary_10_1016_j_mib_2023_102314 crossref_primary_10_1073_pnas_2216084120 crossref_primary_10_1039_D5NP00014A crossref_primary_10_1016_j_tim_2022_08_001 crossref_primary_10_3389_fmicb_2025_1530819 crossref_primary_10_1128_iai_00065_23 crossref_primary_10_3390_ijms24054447 crossref_primary_10_3390_microorganisms11092352 crossref_primary_10_1038_s41579_023_00934_x crossref_primary_10_1016_j_chom_2022_09_017 crossref_primary_10_1371_journal_pbio_3002119 crossref_primary_10_47183_mes_2024_26_4_58_65 crossref_primary_10_1038_s41598_023_36938_z crossref_primary_10_1016_j_cell_2023_02_029 crossref_primary_10_1016_j_tim_2024_02_002 crossref_primary_10_1098_rstb_2024_0067 crossref_primary_10_3390_antibiotics14060545 crossref_primary_10_1007_s00705_025_06358_7 crossref_primary_10_1016_j_chom_2023_03_017 crossref_primary_10_1093_femsml_uqae015 crossref_primary_10_1128_spectrum_01601_24 crossref_primary_10_1038_s41522_024_00552_2 crossref_primary_10_1016_j_mib_2023_102324 crossref_primary_10_1093_femsml_uqad002 crossref_primary_10_1186_s40168_024_01807_y crossref_primary_10_1099_mic_0_001374 crossref_primary_10_1089_phage_2024_0012 crossref_primary_10_1093_jac_dkaf163 |
| Cites_doi | 10.1097/01.blo.0000175887.98112.fe 10.1016/j.syapm.2020.126173 10.1111/j.1574-6976.2011.00317.x 10.1128/jb.61.2.135-143.1951 10.1111/j.1365-2958.2006.05584.x 10.3934/microbiol.2018.3.482 10.1002/cyto.a.22779 10.1016/j.chom.2019.01.009 10.1038/s41564-018-0138-2 10.1016/0022-2836(67)90207-0 10.1126/science.141.3585.1065 10.1016/S0021-9258(19)50710-4 10.1016/S0014-5793(99)00092-7 10.1128/MMBR.00061-19 10.1111/1462-2920.12100 10.1016/0092-8674(93)90720-B 10.1021/bi051777d 10.1128/mSphere.00632-18 10.1007/978-1-0716-1115-9_12 10.1111/mmi.13147 10.1128/AAC.19.5.777 10.1128/AEM.00468-21 10.1099/ijs.0.65272-0 10.1093/nar/gkw692 10.1007/s00299-010-0900-2 10.1038/nmeth.2019 10.3390/antibiotics9100714 10.1126/science.aar4120 10.1038/s41586-018-0767-x 10.1101/cshperspect.a027029 10.1016/0378-1119(92)90603-M 10.1139/m81-039 10.1021/bi9917885 10.1016/0960-894X(95)00467-8 10.1038/227680a0 10.1186/1475-2859-8-31 10.1042/BST20130214 10.1002/bit.24616 10.1016/j.mib.2018.03.003 10.1038/s41586-020-2762-2 10.1016/S1074-5521(98)90286-1 10.1021/cr960415w 10.1007/s00249-015-1095-9 10.1126/science.aba0372 10.1016/B978-0-12-385120-8.00015-2 10.1099/00221287-33-1-9 10.1007/BF02873305 10.1038/s41586-019-1894-8 10.1021/la049207m 10.3390/molecules24193430 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Kever et al. 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2022 Kever et al. 2022 Kever et al. |
| Copyright_xml | – notice: Copyright © 2022 Kever et al. – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2022 Kever et al. 2022 Kever et al. |
| DBID | AAYXX CITATION NPM 8C1 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1128/mbio.00783-22 |
| DatabaseName | CrossRef PubMed Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2150-7511 |
| Editor | Storz, Gisela |
| Editor_xml | – sequence: 1 givenname: Gisela surname: Storz fullname: Storz, Gisela |
| ExternalDocumentID | oai_doaj_org_article_dbd3db942070425ead619c9db48073c7 PMC9239200 00783-22 35506667 10_1128_mbio_00783_22 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Helmholtz Association (亥姆霍兹联合会致力) grantid: W2/W3-096 funderid: https://doi.org/10.13039/501100009318 – fundername: EC | European Research Council (ERC) grantid: 757563 funderid: https://doi.org/10.13039/501100000781 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: 464434020 funderid: https://doi.org/10.13039/501100001659 – fundername: ; grantid: W2/W3-096 – fundername: ; grantid: 464434020 – fundername: ; grantid: 757563 |
| GroupedDBID | --- 0R~ 53G 5VS 8C1 AAFWJ AAGFI AAUOK AAYXX ABUWG ADBBV AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI BTFSW CCPQU CITATION DIK E3Z EBS FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HYE HZ~ KQ8 M48 M7P O5R O5S O9- OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB RHI RNS RPM RSF UKHRP NPM - 0R ADACO BXI HZ M~E RHF 8FE 8FH AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-a516t-2415d7012807ad78ee168d60f270afd86f7b315e839281257eb93d183fe494f63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795810900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2150-7511 2161-2129 |
| IngestDate | Mon Nov 10 04:33:48 EST 2025 Tue Nov 04 01:58:26 EST 2025 Thu Oct 02 04:00:05 EDT 2025 Sat Nov 29 14:28:11 EST 2025 Wed Jun 29 13:42:11 EDT 2022 Thu Apr 03 07:01:30 EDT 2025 Sat Nov 29 02:07:35 EST 2025 Tue Nov 18 21:51:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Streptomyces aminoglycosides phage defense phage-host interaction antibiotics bacteriophages |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a516t-2415d7012807ad78ee168d60f270afd86f7b315e839281257eb93d183fe494f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. Larissa Kever and Aël Hardy contributed equally to this work. To determine the order of the two co-first authors, we flipped a coin. |
| ORCID | 0000-0001-6209-7950 |
| OpenAccessLink | https://doaj.org/article/dbd3db942070425ead619c9db48073c7 |
| PMID | 35506667 |
| PQID | 3261117612 |
| PQPubID | 7421146 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dbd3db942070425ead619c9db48073c7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239200 proquest_miscellaneous_2659603764 proquest_journals_3261117612 asm2_journals_10_1128_mbio_00783_22 pubmed_primary_35506667 crossref_citationtrail_10_1128_mbio_00783_22 crossref_primary_10_1128_mbio_00783_22 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-28 |
| PublicationDateYYYYMMDD | 2022-06-28 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
| PublicationTitle | mBio |
| PublicationTitleAbbrev | mBio |
| PublicationTitleAlternate | mBio |
| PublicationYear | 2022 |
| Publisher | American Society for Microbiology |
| Publisher_xml | – name: American Society for Microbiology |
| References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 Sambrook J (e_1_3_2_43_2) 2001 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 Kieser T (e_1_3_2_36_2) 2000 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_55_2 e_1_3_2_2_2 Moraru, C (B49) 2021; 44 Zuo, P, Yu, P, Alvarez, PJJ (B24) 2021; 87 Barrero-Canosa, J, Moraru, C (B48) 2021; 2246 Ogawara, H (B40) 2019; 24 Litovchick, A, Evdokimov, AG, Lapidot, A (B28) 1999; 445 Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, J-Y, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A (B50) 2012; 9 Rostøl, JT, Marraffini, L (B4) 2019; 25 Litovchick, A, Evdokimov, AG, Lapidot, A (B29) 2000; 39 Helfrich, S, Pfeifer, E, Krämer, C, Sachs, CC, Wiechert, W, Kohlheyer, D, Nöh, K, Frunzke, J (B47) 2015; 98 Gibson, DG (B43) 2011; 498 Rosner, A, Gutstein, R (B38) 1981; 27 Koonin, EV, Dolja, VV, Krupovic, M, Varsani, A, Wolf, YI, Yutin, N, Zerbini, FM, Kuhn, JH (B15) 2020; 84 MacNeil, DJ, Gewain, KM, Ruby, CL, Dezeny, G, Gibbons, PH, MacNeil, T (B41) 1992; 111 Hancock, RE, Raffle, VJ, Nicas, TI (B16) 1981; 19 Doron, S, Melamed, S, Ofir, G, Leavitt, A, Lopatina, A, Keren, M, Amitai, G, Sorek, R (B2) 2018; 359 Magalhaes, ML, Blanchard, JS (B21) 2005; 44 Grünberger, A, van Ooyen, J, Paczia, N, Rohe, P, Schiendzielorz, G, Eggeling, L, Wiechert, W, Kohlheyer, D, Noack, S (B46) 2013; 110 Allers, E, Moraru, C, Duhaime, MB, Beneze, E, Solonenko, N, Barrero-Canosa, J, Amann, R, Sullivan, MB (B20) 2013; 15 Hopwood, DA (B7) 2007; 63 Schatz, A, Bugie, E, Waksman, SA (B9) 2005; 437 Tor, Y, Hermann, T, Westhof, E (B26) 1998; 5 Schindler, J (B10) 1964; 9 Bibb, MJ (B36) 2013; 41 Boulanger, P, Letellier, L (B18) 1992; 267 Bernheim, A, Millman, A, Ofir, G, Meitav, G, Avraham, C, Shomar, H, Rosenberg, MM, Tal, N, Melamed, S, Amitai, G, Sorek, R (B6) 2021; 589 Kronheim, S, Daniel-Ivad, M, Duan, Z, Hwang, S, Wong, AI, Mantel, I, Nodwell, JR, Maxwell, KL (B5) 2018; 564 McCormick, JR, Flärdh, K (B37) 2012; 36 Laemmli, UK (B54) 1970; 227 Brock, TD, Mosser, J, Peacher, B (B12) 1963; 33 Kensy, F, Zang, E, Faulhammer, C, Tan, RK, Buchs, J (B44) 2009; 8 Tenconi, E, Rigali, S (B8) 2018; 45 Mei, H-Y (B30) 1995; 5 Hampton, HG, Watson, BNJ, Fineran, PC (B1) 2020; 577 Kopaczynska, M, Lauer, M, Schulz, A, Wang, T, Schaefer, A, Fuhrhop, J-H (B33) 2004; 20 Perlman, D, Langlykke, AF, Rothberg, HD (B22) 1951; 61 Brock, TD, Wooley, SO (B23) 1963; 141 Jiang, Z, Wei, J, Liang, Y, Peng, N, Li, Y (B19) 2020; 9 Sambrook, J, Russell, DW (B42) 2001 Pfeifer, E, Hünnefeld, M, Popa, O, Polen, T, Kohlheyer, D, Baumgart, M, Frunzke, J (B53) 2016; 44 B51 Tamura, T, Ishida, Y, Otoguro, M, Hatano, K, Suzuki, K (B17) 2008; 58 Reygaert, WC (B39) 2018; 4 B52 Acevedo, MAW, Erickson, AK, Pfeiffer, JK, Greber, UF (B32) 2019; 4 Kieser, T, Bibb, MJ, Buttner, MJ, Chater, KF, Hopwood, DA (B35) 2000 Zapp, ML, Stern, S, Green, MR (B27) 1993; 74 Krause, KM, Serio, AW, Kane, TR, Connolly, LE (B13) 2016; 6 Gao, L, Altae-Tran, H, Böhning, F, Makarova, KS, Segel, M, Schmid-Burgk, JL, Koob, J, Wolf, YI, Koonin, EV, Zhang, F (B3) 2020; 369 Chow, CS, Bogdan, FM (B25) 1997; 97 Padilla, IMG, Burgos, L (B14) 2010; 29 Gopinath, S, Kim, MV, Rakib, T, Wong, PW, van Zandt, M, Barry, NA, Kaisho, T, Goodman, AL, Iwasaki, A (B31) 2018; 3 Bowman, BU (B11) 1967; 25 Grünberger, A, Probst, C, Helfrich, S, Nanda, A, Stute, B, Wiechert, W, von Lieres, E, Nöh, K, Frunzke, J, Kohlheyer, D (B45) 2015; 87 Kopaczynska, M, Schulz, A, Fraczkowska, K, Kraszewski, S, Podbielska, H, Fuhrhop, JH (B34) 2016; 45 |
| References_xml | – ident: e_1_3_2_10_2 doi: 10.1097/01.blo.0000175887.98112.fe – ident: e_1_3_2_50_2 doi: 10.1016/j.syapm.2020.126173 – ident: e_1_3_2_38_2 doi: 10.1111/j.1574-6976.2011.00317.x – ident: e_1_3_2_23_2 doi: 10.1128/jb.61.2.135-143.1951 – ident: e_1_3_2_8_2 doi: 10.1111/j.1365-2958.2006.05584.x – ident: e_1_3_2_40_2 doi: 10.3934/microbiol.2018.3.482 – ident: e_1_3_2_46_2 doi: 10.1002/cyto.a.22779 – ident: e_1_3_2_5_2 doi: 10.1016/j.chom.2019.01.009 – ident: e_1_3_2_32_2 doi: 10.1038/s41564-018-0138-2 – ident: e_1_3_2_12_2 doi: 10.1016/0022-2836(67)90207-0 – ident: e_1_3_2_24_2 doi: 10.1126/science.141.3585.1065 – ident: e_1_3_2_19_2 doi: 10.1016/S0021-9258(19)50710-4 – ident: e_1_3_2_29_2 doi: 10.1016/S0014-5793(99)00092-7 – ident: e_1_3_2_16_2 doi: 10.1128/MMBR.00061-19 – volume-title: Practical streptomyces genetics: a laboratory manual. year: 2000 ident: e_1_3_2_36_2 – ident: e_1_3_2_21_2 doi: 10.1111/1462-2920.12100 – ident: e_1_3_2_28_2 doi: 10.1016/0092-8674(93)90720-B – ident: e_1_3_2_22_2 doi: 10.1021/bi051777d – ident: e_1_3_2_33_2 doi: 10.1128/mSphere.00632-18 – ident: e_1_3_2_49_2 doi: 10.1007/978-1-0716-1115-9_12 – ident: e_1_3_2_48_2 doi: 10.1111/mmi.13147 – ident: e_1_3_2_52_2 – ident: e_1_3_2_17_2 doi: 10.1128/AAC.19.5.777 – ident: e_1_3_2_25_2 doi: 10.1128/AEM.00468-21 – volume-title: Molecular cloning: a laboratory manual year: 2001 ident: e_1_3_2_43_2 – ident: e_1_3_2_18_2 doi: 10.1099/ijs.0.65272-0 – ident: e_1_3_2_54_2 doi: 10.1093/nar/gkw692 – ident: e_1_3_2_15_2 doi: 10.1007/s00299-010-0900-2 – ident: e_1_3_2_51_2 doi: 10.1038/nmeth.2019 – ident: e_1_3_2_20_2 doi: 10.3390/antibiotics9100714 – ident: e_1_3_2_3_2 doi: 10.1126/science.aar4120 – ident: e_1_3_2_6_2 doi: 10.1038/s41586-018-0767-x – ident: e_1_3_2_14_2 doi: 10.1101/cshperspect.a027029 – ident: e_1_3_2_42_2 doi: 10.1016/0378-1119(92)90603-M – ident: e_1_3_2_39_2 doi: 10.1139/m81-039 – ident: e_1_3_2_30_2 doi: 10.1021/bi9917885 – ident: e_1_3_2_31_2 doi: 10.1016/0960-894X(95)00467-8 – ident: e_1_3_2_55_2 doi: 10.1038/227680a0 – ident: e_1_3_2_45_2 doi: 10.1186/1475-2859-8-31 – ident: e_1_3_2_37_2 doi: 10.1042/BST20130214 – ident: e_1_3_2_53_2 – ident: e_1_3_2_47_2 doi: 10.1002/bit.24616 – ident: e_1_3_2_9_2 doi: 10.1016/j.mib.2018.03.003 – ident: e_1_3_2_7_2 doi: 10.1038/s41586-020-2762-2 – ident: e_1_3_2_27_2 doi: 10.1016/S1074-5521(98)90286-1 – ident: e_1_3_2_26_2 doi: 10.1021/cr960415w – ident: e_1_3_2_35_2 doi: 10.1007/s00249-015-1095-9 – ident: e_1_3_2_4_2 doi: 10.1126/science.aba0372 – ident: e_1_3_2_44_2 doi: 10.1016/B978-0-12-385120-8.00015-2 – ident: e_1_3_2_13_2 doi: 10.1099/00221287-33-1-9 – ident: e_1_3_2_11_2 doi: 10.1007/BF02873305 – ident: e_1_3_2_2_2 doi: 10.1038/s41586-019-1894-8 – ident: e_1_3_2_34_2 doi: 10.1021/la049207m – ident: e_1_3_2_41_2 doi: 10.3390/molecules24193430 – volume: 2246 start-page: 169 year: 2021 end-page: 205 ident: B48 article-title: Linking microbes to their genes at single cell level with direct-geneFISH publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-1115-9_12 – volume: 3 start-page: 611 year: 2018 end-page: 621 ident: B31 article-title: Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner publication-title: Nat Microbiol doi: 10.1038/s41564-018-0138-2 – volume: 97 start-page: 1489 year: 1997 end-page: 1514 ident: B25 article-title: A structural basis for RNA−ligand interactions publication-title: Chem Rev doi: 10.1021/cr960415w – volume: 25 start-page: 559 year: 1967 end-page: 561 ident: B11 article-title: Biological activity of phi-X DNA. I. Inhibition of infectivity by streptomycin publication-title: J Mol Biol doi: 10.1016/0022-2836(67)90207-0 – ident: B51 article-title: Allaire J . 2012 . RStudio: integrated development environment for R . RStudio , Boston, MA . – volume: 6 start-page: a027029 year: 2016 ident: B13 article-title: Aminoglycosides: an overview publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a027029 – volume: 27 start-page: 254 year: 1981 end-page: 257 ident: B38 article-title: Adsorption of actinophage Pal 6 to developing mycelium of Streptomyces albus publication-title: Can J Microbiol doi: 10.1139/m81-039 – volume: 87 start-page: 1101 year: 2015 end-page: 1115 ident: B45 article-title: Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform publication-title: Cytometry A doi: 10.1002/cyto.a.22779 – volume: 359 year: 2018 ident: B2 article-title: Systematic discovery of antiphage defense systems in the microbial pangenome publication-title: Science doi: 10.1126/science.aar4120 – volume: 19 start-page: 777 year: 1981 end-page: 785 ident: B16 article-title: Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.19.5.777 – volume: 445 start-page: 73 year: 1999 end-page: 79 ident: B28 article-title: Arginine-aminoglycoside conjugates that bind to HIV transactivation responsive element RNA in vitro publication-title: FEBS Lett doi: 10.1016/S0014-5793(99)00092-7 – volume: 29 start-page: 1203 year: 2010 end-page: 1213 ident: B14 article-title: Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0900-2 – volume: 63 start-page: 937 year: 2007 end-page: 940 ident: B7 article-title: How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05584.x – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: B50 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2019 – volume: 39 start-page: 2838 year: 2000 end-page: 2852 ident: B29 article-title: Aminoglycoside−arginine conjugates that bind TAR RNA: synthesis, characterization, and antiviral activity publication-title: Biochemistry doi: 10.1021/bi9917885 – year: 2000 ident: B35 publication-title: Practical streptomyces genetics: a laboratory manual. ;John Innes Foundation ;Norwich, United Kingdom – volume: 369 start-page: 1077 year: 2020 end-page: 1084 ident: B3 article-title: Diverse enzymatic activities mediate antiviral immunity in prokaryotes publication-title: Science doi: 10.1126/science.aba0372 – volume: 9 start-page: 269 year: 1964 end-page: 276 ident: B10 article-title: Inhibition of reproduction of the f2 bacteriophage by streptomycin publication-title: Folia Microbiol doi: 10.1007/BF02873305 – volume: 25 start-page: 184 year: 2019 end-page: 194 ident: B4 article-title: (Ph)ighting phages: how bacteria resist their parasites publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.01.009 – volume: 41 start-page: 1355 year: 2013 end-page: 1364 ident: B36 article-title: Understanding and manipulating antibiotic production in actinomycetes publication-title: Biochem Soc Trans doi: 10.1042/BST20130214 – volume: 498 start-page: 349 year: 2011 end-page: 361 ident: B43 article-title: Enzymatic assembly of overlapping DNA fragments publication-title: Methods Enzymol doi: 10.1016/B978-0-12-385120-8.00015-2 – volume: 5 start-page: R277 year: 1998 end-page: R283 ident: B26 article-title: Deciphering RNA recognition: aminoglycoside binding to the hammerhead ribozyme publication-title: Chem Biol doi: 10.1016/S1074-5521(98)90286-1 – volume: 44 start-page: 126173 year: 2021 ident: B49 article-title: Gene-PROBER—a tool to design polynucleotide probes for targeting microbial genes publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2020.126173 – volume: 36 start-page: 206 year: 2012 end-page: 231 ident: B37 article-title: Signals and regulators that govern Streptomyces development publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2011.00317.x – volume: 61 start-page: 135 year: 1951 end-page: 143 ident: B22 article-title: Observations on the chemical inhibition of Streptomyces griseus bacteriophage multiplication publication-title: J Bacteriol doi: 10.1128/jb.61.2.135-143.1951 – volume: 84 year: 2020 ident: B15 article-title: Global organization and proposed megataxonomy of the virus world publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00061-19 – volume: 437 start-page: 3 year: 2005 end-page: 6 ident: B9 article-title: The classic: streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria publication-title: Clin Orthop Relat Res doi: 10.1097/01.blo.0000175887.98112.fe – volume: 98 start-page: 636 year: 2015 end-page: 650 ident: B47 article-title: Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations publication-title: Mol Microbiol doi: 10.1111/mmi.13147 – volume: 15 start-page: 2306 year: 2013 end-page: 2318 ident: B20 article-title: Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses publication-title: Environ Microbiol doi: 10.1111/1462-2920.12100 – volume: 141 start-page: 1065 year: 1963 end-page: 1067 ident: B23 article-title: Streptomycin as an antiviral agent: mode of action publication-title: Science doi: 10.1126/science.141.3585.1065 – volume: 33 start-page: 9 year: 1963 end-page: 22 ident: B12 article-title: The inhibition by streptomycin of certain Streptococcus bacteriophages, using host bacteria resistant to the antibiotic publication-title: J Gen Microbiol doi: 10.1099/00221287-33-1-9 – volume: 589 start-page: 120 year: 2021 end-page: 124 ident: B6 article-title: Prokaryotic viperins produce diverse antiviral molecules publication-title: Nature doi: 10.1038/s41586-020-2762-2 – volume: 45 start-page: 100 year: 2018 end-page: 108 ident: B8 article-title: Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2018.03.003 – volume: 564 start-page: 283 year: 2018 end-page: 286 ident: B5 article-title: A chemical defence against phage infection publication-title: Nature doi: 10.1038/s41586-018-0767-x – volume: 8 start-page: 31 year: 2009 ident: B44 article-title: Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates publication-title: Microb Cell Fact doi: 10.1186/1475-2859-8-31 – volume: 44 start-page: 10117 year: 2016 end-page: 10131 ident: B53 article-title: Silencing of cryptic prophages in Corynebacterium glutamicum publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw692 – volume: 227 start-page: 680 year: 1970 end-page: 685 ident: B54 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature doi: 10.1038/227680a0 – volume: 24 start-page: 3430 year: 2019 ident: B40 article-title: Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria publication-title: Molecules doi: 10.3390/molecules24193430 – volume: 9 start-page: 714 year: 2020 ident: B19 article-title: Aminoglycoside antibiotics inhibit mycobacteriophage infection publication-title: Antibiotics (Basel) doi: 10.3390/antibiotics9100714 – volume: 44 start-page: 16275 year: 2005 end-page: 16283 ident: B21 article-title: The kinetic mechanism of AAC3-IV aminoglycoside acetyltransferase from Escherichia coli publication-title: Biochemistry doi: 10.1021/bi051777d – volume: 267 start-page: 3168 year: 1992 end-page: 3172 ident: B18 article-title: Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into Escherichia coli cells publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50710-4 – volume: 87 year: 2021 ident: B24 article-title: Aminoglycosides antagonize bacteriophage proliferation, attenuating phage suppression of bacterial growth, biofilm formation, and antibiotic resistance publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00468-21 – ident: B52 article-title: R Core Team . 2021 . R: a language and environment for statistical computing . R Foundation for Statistical Computing , Vienna, Austria . – volume: 5 start-page: 2755 year: 1995 end-page: 2760 ident: B30 article-title: Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics publication-title: Bioorg Med Chem Lett doi: 10.1016/0960-894X(95)00467-8 – volume: 45 start-page: 287 year: 2016 end-page: 299 ident: B34 article-title: Selective condensation of DNA by aminoglycoside antibiotics publication-title: Eur Biophys J doi: 10.1007/s00249-015-1095-9 – volume: 74 start-page: 969 year: 1993 end-page: 976 ident: B27 article-title: Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production publication-title: Cell doi: 10.1016/0092-8674(93)90720-B – volume: 111 start-page: 61 year: 1992 end-page: 68 ident: B41 article-title: Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector publication-title: Gene doi: 10.1016/0378-1119(92)90603-M – volume: 4 start-page: 482 year: 2018 end-page: 501 ident: B39 article-title: An overview of the antimicrobial resistance mechanisms of bacteria publication-title: AIMS Microbiol doi: 10.3934/microbiol.2018.3.482 – volume: 58 start-page: 688 year: 2008 end-page: 691 ident: B17 article-title: Classification of ‘Streptomyces tenebrarius’ Higgins and Kastner as Streptoalloteichus tenebrarius nom. rev., comb. nov., and emended description of the genus Streptoalloteichus publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.65272-0 – volume: 110 start-page: 220 year: 2013 end-page: 228 ident: B46 article-title: Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments publication-title: Biotechnol Bioeng doi: 10.1002/bit.24616 – volume: 20 start-page: 9270 year: 2004 end-page: 9275 ident: B33 article-title: Aminoglycoside antibiotics aggregate to form starch-like fibers on negatively charged surfaces and on phage lambda-DNA publication-title: Langmuir doi: 10.1021/la049207m – volume: 4 year: 2019 ident: B32 article-title: The antibiotic neomycin enhances coxsackievirus plaque formation publication-title: mSphere doi: 10.1128/mSphere.00632-18 – year: 2001 ident: B42 publication-title: Molecular cloning: a laboratory manual ;3rd ed ;Cold Spring Harbor Laboratory Press ;Cold Spring Harbor, NY – volume: 577 start-page: 327 year: 2020 end-page: 336 ident: B1 article-title: The arms race between bacteria and their phage foes publication-title: Nature doi: 10.1038/s41586-019-1894-8 |
| SSID | ssj0000331830 |
| Score | 2.5301056 |
| Snippet | Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic... In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we... ABSTRACT In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level.... |
| SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0078322 |
| SubjectTerms | Acetylation Aminoglycoside antibiotics aminoglycosides Antibacterial activity Antibiotics Antiviral activity Apramycin Bacteria bacteriophages CRISPR Defense mechanisms E coli Genomes Host-Microbial Interactions Infections Metabolites phage defense phage-host interaction Phages Predation Protein biosynthesis Research Article Restriction-modification Streptomyces Translation |
| SummonAdditionalLinks | – databaseName: Public Health Database dbid: 8C1 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BAIkLb6ihoEUgTqxq79r7OKE0ooJL1QNIvVneh5tIzbrEaaX8e2Zsx20Q5cItjkfJWvP6Zrz7DSEfIccUoeaGWeckA6MwrAoyZZlUNk99ncs674ZNqONjfXpqToaGWztsq9zGxC5Q-8Zhj_wAYAa4JRTd_MvFL4ZTo_Dt6jBC4y65l_E0R8fUs2zssaQCLRbbLByADYMobbY0m1wfLO2iQeZsLRiOzp1U7ZLvZKeOxP9vyPPPDZQ3MtLR4_99lifk0YBF6bQ3nqfkTojPyIN-OuXmOXHT5SI2Z-cb1-BMTzqNeL6kQV5n-j3O4fOanswhHsFVv6MrUruhh5Aesf9Oq0g7-mSKO8loU1PAmjdEZxv40xfk59HXH7NvbJjJwKoik2uGCd8rzGqpqrzSIWRSe5nWXKVV7bWslRVZERB3AXYoVLBGeNBCHXKT11K8JJPYxLBHqC9qCB6iyrTXuRPCOp65yqhQ5CEtrE_IB1RJOThVW3b1CtclKq7sFFdynpDPW42VbqA1x-ka57eJfxrFL3o-j9sED1H9oxDScHdfNKuzcvDq0lsvvDU5h8AJdg5eCfWoM97iQX3hVEL2twZw_RjX2k_I-_E2eDW-qqliaC7bkssCSksI_nlCXvW2Nq4EECIWnfDjascKd5a6eycu5h1zOKB5A2Hx9b-X9YY85HjII5WM630yWa8uw1ty312tF-3qXedivwHomixo priority: 102 providerName: ProQuest |
| Title | Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35506667 https://journals.asm.org/doi/10.1128/mbio.00783-22 https://www.proquest.com/docview/3261117612 https://www.proquest.com/docview/2659603764 https://pubmed.ncbi.nlm.nih.gov/PMC9239200 https://doaj.org/article/dbd3db942070425ead619c9db48073c7 |
| Volume | 13 |
| WOSCitedRecordID | wos000795810900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2150-7511 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2150-7511 databaseCode: M7P dateStart: 20100501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2150-7511 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2150-7511 databaseCode: 8C1 dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2150-7511 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331830 issn: 2150-7511 databaseCode: PIMPY dateStart: 20100501 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaggMQF8aawVEYgTkSb2IntHNtqV-yBKkIglVMUv2ilrYO2XaT-e2actLSIFRcuUR4jxx6PPZ-T8TeEvAMfUzjPykQbIxIwijJpnEiTTEidp9bnwucx2YSczdR8XlYHqb4wJqyjB-4Ud2q15VaXOQPbhKKg4QD5TWk17oXmJu4jB9RzsJiKczBHW013pJpMna70skWebMUTTJQ7aNYrduSLImX_33Dmn-GSB_7n_CF50ANHOu4q_IjccuExudelktw-IWa8Wob2--XWtJiAk44DbgZpkYSZXoQFnG9otYDJA6668KtA9ZZOwJfhx3LaBBq5jimGfdHWUwCGB6LTLbz0Kfl6fvZl-jHpEygkTZGJTYLe2Up0QalsrFTOZUJZkXom08ZbJbzUPCscgiRw9IV0uuQWFOddXuZe8GdkENrgXhBqCw8jnTeZsio3nGvDMtOU0hW5Swtth-QtarTuR8C6josLpmrUex31XjM2JB92Cq9Nz0GOqTAubxJ_vxf_0ZFv3CQ4wd7bCyFndrwBllT3llT_y5KG5GTX97-bAegWvIEEHDgkb_aPYQjif5UmuPZ6XTNRwDoQZup8SJ53prKvCcA5XCFC4fLIiI6qevwkLBeR5hugdwlz2Mv_0bZX5D7DfRupSJg6IYPN1bV7Te6an5vl-mpEbsu5gqOaZiNyZ3I2qz6P4ngaYShsBfeqi0_Vt19w8SL9 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAIIL70egwCIeJ1a11_bu-oBQGqgatVQ9FKk31_twE6mxS5KC8qf4jczYcdogyq0Hbkk8ctbJN9_M7OMbgLcYYxJfiJQbayVHUKQ89zLgoVQmDlwRyyKum02ovT19eJjur8Gv9iwMbatsObEmaldZmiPfwDQD3RKLbvHp9DunrlG0utq20GhgsePnP7Fkm34cfMb_950QW18O-tt80VWA50koZ5xCllPEy4HKndLeh1I7GRRCBXnhtCyUicLEU-aA0S9R3qSRQ-QXPk7jQkZ432twnZTsqNjT_XA5pxNE5CE0rSMwkeIYFdJW1lPojbEZVaTUrSNOrXo7-XQsVqJh3TTgb5nunxs2L0TArbv_2293D-4scm3Wa5zjPqz58gHcbLpvzh-C7Y1HZXV8MrcV9SxlvZLOz1SkW80G5RBfz9j-EPkW3zU71kpm5mwTwz-tL7C8ZLU8NKOdcqwqGObSF0z7c_zSR_DtSp7wMXTKqvRPgbmkQHKM8lA7HdsoMlaENk-VT2IfJMZ14Q1BIFuQxjSr6zGhMwJKVgMlE6ILH1qEZHYh207dQ04uM3-_ND9t9EouM9wkuC2NSGa8_qCaHGcL1sqccZEzaSwwMKAfI-tgvW1TZ0iIILKqC-st4M4f4xxtXXi9vIysRUtReemrs2kmZIKlMwa3uAtPGmwvR4IZMBXVeHO1gvqVoa5eKUfDWhkdq5UUaf_Zv4f1Cm5tH3zdzXYHezvP4bagAy2B5EKvQ2c2OfMv4Ib9MRtNJy9r92ZwdNU-8Rvsl4Z_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aminoglycoside+Antibiotics+Inhibit+Phage+Infection+by+Blocking+an+Early+Step+of+the+Infection+Cycle&rft.jtitle=mBio&rft.au=Larissa+Kever&rft.au=A%C3%ABl+Hardy&rft.au=Tom+Luthe&rft.au=Max+H%C3%BCnnefeld&rft.date=2022-06-28&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1128%2Fmbio.00783-22&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dbd3db942070425ead619c9db48073c7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |