Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle

Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at...

Full description

Saved in:
Bibliographic Details
Published in:mBio Vol. 13; no. 3; p. e0078322
Main Authors: Kever, Larissa, Hardy, Aël, Luthe, Tom, Hünnefeld, Max, Gätgens, Cornelia, Milke, Lars, Wiechert, Johanna, Wittmann, Johannes, Moraru, Cristina, Marienhagen, Jan, Frunzke, Julia
Format: Journal Article
Language:English
Published: United States American Society for Microbiology 28.06.2022
Subjects:
ISSN:2150-7511, 2161-2129, 2150-7511
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces , are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae , our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces . Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
AbstractList In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces , are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae , our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces . Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
ABSTRACT In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level.
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by , are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by . Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
Author Hardy, Aël
Hünnefeld, Max
Gätgens, Cornelia
Marienhagen, Jan
Milke, Lars
Kever, Larissa
Wiechert, Johanna
Wittmann, Johannes
Luthe, Tom
Frunzke, Julia
Moraru, Cristina
Author_xml – sequence: 1
  givenname: Larissa
  surname: Kever
  fullname: Kever, Larissa
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 2
  givenname: Aël
  surname: Hardy
  fullname: Hardy, Aël
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 3
  givenname: Tom
  surname: Luthe
  fullname: Luthe, Tom
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 4
  givenname: Max
  surname: Hünnefeld
  fullname: Hünnefeld, Max
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 5
  givenname: Cornelia
  surname: Gätgens
  fullname: Gätgens, Cornelia
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 6
  givenname: Lars
  surname: Milke
  fullname: Milke, Lars
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 7
  givenname: Johanna
  surname: Wiechert
  fullname: Wiechert, Johanna
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
– sequence: 8
  givenname: Johannes
  surname: Wittmann
  fullname: Wittmann, Johannes
  organization: Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
– sequence: 9
  givenname: Cristina
  surname: Moraru
  fullname: Moraru, Cristina
  organization: Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
– sequence: 10
  givenname: Jan
  surname: Marienhagen
  fullname: Marienhagen, Jan
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany, Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
– sequence: 11
  givenname: Julia
  orcidid: 0000-0001-6209-7950
  surname: Frunzke
  fullname: Frunzke, Julia
  organization: Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35506667$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9vFCEUx4mpse3ao1cziRdjMpUfA8xcTLabVjdpool6Jgwws6wMrMCa7H8v22112ygXHvDhy_s-3jk48cEbAF4heIkQbt9PvQ2XEPKW1Bg_A2cYUVhzitDJUXwKLlJawzIIQS2BL8ApoRQyxvgZUPPJ-jC6nQrJalPNfbZFNFuVqqVflThXX1ZyNGU1GJVt8FW_q65cUD-sHyvpq2sZ3a76ms2mCkOVV8foYqeceQmeD9Ilc3E_z8D3m-tvi0_17eePy8X8tpYUsVzjBlHNYfEFudS8NQaxVjM4YA7loFs28J4galrS4RZhyk3fEV0cDabpmoGRGVgedHWQa7GJdpJxJ4K04m4jxFHIWJw5I3Svie67BkMOG0yN1Ax1qtN9Ux4nihetDwetzbafjFbG5yjdI9HHJ96uxBh-iQ6X9EqpZ-DtvUAMP7cmZTHZpIxz0puwTQIz2jFIOGsK-uYJug7b6EupBMEMIcQZwoV6d6BkmvBfAkGxbwWxbwVx1woC7-HXx-n_yfvh4wtADoCKIaVoBqFslvs_K26s-69s_eTWg_C_-d8Oos-z
CitedBy_id crossref_primary_10_1371_journal_pbio_3002725
crossref_primary_10_1016_j_cbpa_2024_102566
crossref_primary_10_1038_s41467_024_45068_7
crossref_primary_10_3390_antibiotics11111566
crossref_primary_10_1007_s00408_024_00700_7
crossref_primary_10_1021_jacs_3c01874
crossref_primary_10_1016_j_tim_2023_05_002
crossref_primary_10_1016_j_cej_2024_150276
crossref_primary_10_1128_spectrum_00663_24
crossref_primary_10_1016_j_virusres_2022_198909
crossref_primary_10_1128_jb_00153_23
crossref_primary_10_3390_ph16050744
crossref_primary_10_1371_journal_pbio_3003065
crossref_primary_10_1128_spectrum_02435_24
crossref_primary_10_3390_ijms25094929
crossref_primary_10_3390_v15020588
crossref_primary_10_1016_j_mib_2022_102257
crossref_primary_10_1016_j_mib_2023_102314
crossref_primary_10_1073_pnas_2216084120
crossref_primary_10_1039_D5NP00014A
crossref_primary_10_1016_j_tim_2022_08_001
crossref_primary_10_3389_fmicb_2025_1530819
crossref_primary_10_1128_iai_00065_23
crossref_primary_10_3390_ijms24054447
crossref_primary_10_3390_microorganisms11092352
crossref_primary_10_1038_s41579_023_00934_x
crossref_primary_10_1016_j_chom_2022_09_017
crossref_primary_10_1371_journal_pbio_3002119
crossref_primary_10_47183_mes_2024_26_4_58_65
crossref_primary_10_1038_s41598_023_36938_z
crossref_primary_10_1016_j_cell_2023_02_029
crossref_primary_10_1016_j_tim_2024_02_002
crossref_primary_10_1098_rstb_2024_0067
crossref_primary_10_3390_antibiotics14060545
crossref_primary_10_1007_s00705_025_06358_7
crossref_primary_10_1016_j_chom_2023_03_017
crossref_primary_10_1093_femsml_uqae015
crossref_primary_10_1128_spectrum_01601_24
crossref_primary_10_1038_s41522_024_00552_2
crossref_primary_10_1016_j_mib_2023_102324
crossref_primary_10_1093_femsml_uqad002
crossref_primary_10_1186_s40168_024_01807_y
crossref_primary_10_1099_mic_0_001374
crossref_primary_10_1089_phage_2024_0012
crossref_primary_10_1093_jac_dkaf163
Cites_doi 10.1097/01.blo.0000175887.98112.fe
10.1016/j.syapm.2020.126173
10.1111/j.1574-6976.2011.00317.x
10.1128/jb.61.2.135-143.1951
10.1111/j.1365-2958.2006.05584.x
10.3934/microbiol.2018.3.482
10.1002/cyto.a.22779
10.1016/j.chom.2019.01.009
10.1038/s41564-018-0138-2
10.1016/0022-2836(67)90207-0
10.1126/science.141.3585.1065
10.1016/S0021-9258(19)50710-4
10.1016/S0014-5793(99)00092-7
10.1128/MMBR.00061-19
10.1111/1462-2920.12100
10.1016/0092-8674(93)90720-B
10.1021/bi051777d
10.1128/mSphere.00632-18
10.1007/978-1-0716-1115-9_12
10.1111/mmi.13147
10.1128/AAC.19.5.777
10.1128/AEM.00468-21
10.1099/ijs.0.65272-0
10.1093/nar/gkw692
10.1007/s00299-010-0900-2
10.1038/nmeth.2019
10.3390/antibiotics9100714
10.1126/science.aar4120
10.1038/s41586-018-0767-x
10.1101/cshperspect.a027029
10.1016/0378-1119(92)90603-M
10.1139/m81-039
10.1021/bi9917885
10.1016/0960-894X(95)00467-8
10.1038/227680a0
10.1186/1475-2859-8-31
10.1042/BST20130214
10.1002/bit.24616
10.1016/j.mib.2018.03.003
10.1038/s41586-020-2762-2
10.1016/S1074-5521(98)90286-1
10.1021/cr960415w
10.1007/s00249-015-1095-9
10.1126/science.aba0372
10.1016/B978-0-12-385120-8.00015-2
10.1099/00221287-33-1-9
10.1007/BF02873305
10.1038/s41586-019-1894-8
10.1021/la049207m
10.3390/molecules24193430
ContentType Journal Article
Copyright Copyright © 2022 Kever et al.
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Kever et al. 2022 Kever et al.
Copyright_xml – notice: Copyright © 2022 Kever et al.
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Kever et al. 2022 Kever et al.
DBID AAYXX
CITATION
NPM
8C1
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1128/mbio.00783-22
DatabaseName CrossRef
PubMed
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Storz, Gisela
Editor_xml – sequence: 1
  givenname: Gisela
  surname: Storz
  fullname: Storz, Gisela
ExternalDocumentID oai_doaj_org_article_dbd3db942070425ead619c9db48073c7
PMC9239200
00783-22
35506667
10_1128_mbio_00783_22
Genre Journal Article
GrantInformation_xml – fundername: Helmholtz Association (亥姆霍兹联合会致力)
  grantid: W2/W3-096
  funderid: https://doi.org/10.13039/501100009318
– fundername: EC | European Research Council (ERC)
  grantid: 757563
  funderid: https://doi.org/10.13039/501100000781
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: 464434020
  funderid: https://doi.org/10.13039/501100001659
– fundername: ;
  grantid: W2/W3-096
– fundername: ;
  grantid: 464434020
– fundername: ;
  grantid: 757563
GroupedDBID ---
0R~
53G
5VS
8C1
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BTFSW
CCPQU
CITATION
DIK
E3Z
EBS
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
HZ~
KQ8
M48
M7P
O5R
O5S
O9-
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
RHI
RNS
RPM
RSF
UKHRP
NPM
-
0R
ADACO
BXI
HZ
M~E
RHF
8FE
8FH
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-a516t-2415d7012807ad78ee168d60f270afd86f7b315e839281257eb93d183fe494f63
IEDL.DBID DOA
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795810900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2150-7511
2161-2129
IngestDate Mon Nov 10 04:33:48 EST 2025
Tue Nov 04 01:58:26 EST 2025
Thu Oct 02 04:00:05 EDT 2025
Sat Nov 29 14:28:11 EST 2025
Wed Jun 29 13:42:11 EDT 2022
Thu Apr 03 07:01:30 EDT 2025
Sat Nov 29 02:07:35 EST 2025
Tue Nov 18 21:51:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Streptomyces
aminoglycosides
phage defense
phage-host interaction
antibiotics
bacteriophages
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a516t-2415d7012807ad78ee168d60f270afd86f7b315e839281257eb93d183fe494f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
Larissa Kever and Aël Hardy contributed equally to this work. To determine the order of the two co-first authors, we flipped a coin.
ORCID 0000-0001-6209-7950
OpenAccessLink https://doaj.org/article/dbd3db942070425ead619c9db48073c7
PMID 35506667
PQID 3261117612
PQPubID 7421146
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_dbd3db942070425ead619c9db48073c7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239200
proquest_miscellaneous_2659603764
proquest_journals_3261117612
asm2_journals_10_1128_mbio_00783_22
pubmed_primary_35506667
crossref_citationtrail_10_1128_mbio_00783_22
crossref_primary_10_1128_mbio_00783_22
PublicationCentury 2000
PublicationDate 2022-06-28
PublicationDateYYYYMMDD 2022-06-28
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
Sambrook J (e_1_3_2_43_2) 2001
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
Kieser T (e_1_3_2_36_2) 2000
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_55_2
e_1_3_2_2_2
Moraru, C (B49) 2021; 44
Zuo, P, Yu, P, Alvarez, PJJ (B24) 2021; 87
Barrero-Canosa, J, Moraru, C (B48) 2021; 2246
Ogawara, H (B40) 2019; 24
Litovchick, A, Evdokimov, AG, Lapidot, A (B28) 1999; 445
Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, J-Y, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A (B50) 2012; 9
Rostøl, JT, Marraffini, L (B4) 2019; 25
Litovchick, A, Evdokimov, AG, Lapidot, A (B29) 2000; 39
Helfrich, S, Pfeifer, E, Krämer, C, Sachs, CC, Wiechert, W, Kohlheyer, D, Nöh, K, Frunzke, J (B47) 2015; 98
Gibson, DG (B43) 2011; 498
Rosner, A, Gutstein, R (B38) 1981; 27
Koonin, EV, Dolja, VV, Krupovic, M, Varsani, A, Wolf, YI, Yutin, N, Zerbini, FM, Kuhn, JH (B15) 2020; 84
MacNeil, DJ, Gewain, KM, Ruby, CL, Dezeny, G, Gibbons, PH, MacNeil, T (B41) 1992; 111
Hancock, RE, Raffle, VJ, Nicas, TI (B16) 1981; 19
Doron, S, Melamed, S, Ofir, G, Leavitt, A, Lopatina, A, Keren, M, Amitai, G, Sorek, R (B2) 2018; 359
Magalhaes, ML, Blanchard, JS (B21) 2005; 44
Grünberger, A, van Ooyen, J, Paczia, N, Rohe, P, Schiendzielorz, G, Eggeling, L, Wiechert, W, Kohlheyer, D, Noack, S (B46) 2013; 110
Allers, E, Moraru, C, Duhaime, MB, Beneze, E, Solonenko, N, Barrero-Canosa, J, Amann, R, Sullivan, MB (B20) 2013; 15
Hopwood, DA (B7) 2007; 63
Schatz, A, Bugie, E, Waksman, SA (B9) 2005; 437
Tor, Y, Hermann, T, Westhof, E (B26) 1998; 5
Schindler, J (B10) 1964; 9
Bibb, MJ (B36) 2013; 41
Boulanger, P, Letellier, L (B18) 1992; 267
Bernheim, A, Millman, A, Ofir, G, Meitav, G, Avraham, C, Shomar, H, Rosenberg, MM, Tal, N, Melamed, S, Amitai, G, Sorek, R (B6) 2021; 589
Kronheim, S, Daniel-Ivad, M, Duan, Z, Hwang, S, Wong, AI, Mantel, I, Nodwell, JR, Maxwell, KL (B5) 2018; 564
McCormick, JR, Flärdh, K (B37) 2012; 36
Laemmli, UK (B54) 1970; 227
Brock, TD, Mosser, J, Peacher, B (B12) 1963; 33
Kensy, F, Zang, E, Faulhammer, C, Tan, RK, Buchs, J (B44) 2009; 8
Tenconi, E, Rigali, S (B8) 2018; 45
Mei, H-Y (B30) 1995; 5
Hampton, HG, Watson, BNJ, Fineran, PC (B1) 2020; 577
Kopaczynska, M, Lauer, M, Schulz, A, Wang, T, Schaefer, A, Fuhrhop, J-H (B33) 2004; 20
Perlman, D, Langlykke, AF, Rothberg, HD (B22) 1951; 61
Brock, TD, Wooley, SO (B23) 1963; 141
Jiang, Z, Wei, J, Liang, Y, Peng, N, Li, Y (B19) 2020; 9
Sambrook, J, Russell, DW (B42) 2001
Pfeifer, E, Hünnefeld, M, Popa, O, Polen, T, Kohlheyer, D, Baumgart, M, Frunzke, J (B53) 2016; 44
B51
Tamura, T, Ishida, Y, Otoguro, M, Hatano, K, Suzuki, K (B17) 2008; 58
Reygaert, WC (B39) 2018; 4
B52
Acevedo, MAW, Erickson, AK, Pfeiffer, JK, Greber, UF (B32) 2019; 4
Kieser, T, Bibb, MJ, Buttner, MJ, Chater, KF, Hopwood, DA (B35) 2000
Zapp, ML, Stern, S, Green, MR (B27) 1993; 74
Krause, KM, Serio, AW, Kane, TR, Connolly, LE (B13) 2016; 6
Gao, L, Altae-Tran, H, Böhning, F, Makarova, KS, Segel, M, Schmid-Burgk, JL, Koob, J, Wolf, YI, Koonin, EV, Zhang, F (B3) 2020; 369
Chow, CS, Bogdan, FM (B25) 1997; 97
Padilla, IMG, Burgos, L (B14) 2010; 29
Gopinath, S, Kim, MV, Rakib, T, Wong, PW, van Zandt, M, Barry, NA, Kaisho, T, Goodman, AL, Iwasaki, A (B31) 2018; 3
Bowman, BU (B11) 1967; 25
Grünberger, A, Probst, C, Helfrich, S, Nanda, A, Stute, B, Wiechert, W, von Lieres, E, Nöh, K, Frunzke, J, Kohlheyer, D (B45) 2015; 87
Kopaczynska, M, Schulz, A, Fraczkowska, K, Kraszewski, S, Podbielska, H, Fuhrhop, JH (B34) 2016; 45
References_xml – ident: e_1_3_2_10_2
  doi: 10.1097/01.blo.0000175887.98112.fe
– ident: e_1_3_2_50_2
  doi: 10.1016/j.syapm.2020.126173
– ident: e_1_3_2_38_2
  doi: 10.1111/j.1574-6976.2011.00317.x
– ident: e_1_3_2_23_2
  doi: 10.1128/jb.61.2.135-143.1951
– ident: e_1_3_2_8_2
  doi: 10.1111/j.1365-2958.2006.05584.x
– ident: e_1_3_2_40_2
  doi: 10.3934/microbiol.2018.3.482
– ident: e_1_3_2_46_2
  doi: 10.1002/cyto.a.22779
– ident: e_1_3_2_5_2
  doi: 10.1016/j.chom.2019.01.009
– ident: e_1_3_2_32_2
  doi: 10.1038/s41564-018-0138-2
– ident: e_1_3_2_12_2
  doi: 10.1016/0022-2836(67)90207-0
– ident: e_1_3_2_24_2
  doi: 10.1126/science.141.3585.1065
– ident: e_1_3_2_19_2
  doi: 10.1016/S0021-9258(19)50710-4
– ident: e_1_3_2_29_2
  doi: 10.1016/S0014-5793(99)00092-7
– ident: e_1_3_2_16_2
  doi: 10.1128/MMBR.00061-19
– volume-title: Practical streptomyces genetics: a laboratory manual.
  year: 2000
  ident: e_1_3_2_36_2
– ident: e_1_3_2_21_2
  doi: 10.1111/1462-2920.12100
– ident: e_1_3_2_28_2
  doi: 10.1016/0092-8674(93)90720-B
– ident: e_1_3_2_22_2
  doi: 10.1021/bi051777d
– ident: e_1_3_2_33_2
  doi: 10.1128/mSphere.00632-18
– ident: e_1_3_2_49_2
  doi: 10.1007/978-1-0716-1115-9_12
– ident: e_1_3_2_48_2
  doi: 10.1111/mmi.13147
– ident: e_1_3_2_52_2
– ident: e_1_3_2_17_2
  doi: 10.1128/AAC.19.5.777
– ident: e_1_3_2_25_2
  doi: 10.1128/AEM.00468-21
– volume-title: Molecular cloning: a laboratory manual
  year: 2001
  ident: e_1_3_2_43_2
– ident: e_1_3_2_18_2
  doi: 10.1099/ijs.0.65272-0
– ident: e_1_3_2_54_2
  doi: 10.1093/nar/gkw692
– ident: e_1_3_2_15_2
  doi: 10.1007/s00299-010-0900-2
– ident: e_1_3_2_51_2
  doi: 10.1038/nmeth.2019
– ident: e_1_3_2_20_2
  doi: 10.3390/antibiotics9100714
– ident: e_1_3_2_3_2
  doi: 10.1126/science.aar4120
– ident: e_1_3_2_6_2
  doi: 10.1038/s41586-018-0767-x
– ident: e_1_3_2_14_2
  doi: 10.1101/cshperspect.a027029
– ident: e_1_3_2_42_2
  doi: 10.1016/0378-1119(92)90603-M
– ident: e_1_3_2_39_2
  doi: 10.1139/m81-039
– ident: e_1_3_2_30_2
  doi: 10.1021/bi9917885
– ident: e_1_3_2_31_2
  doi: 10.1016/0960-894X(95)00467-8
– ident: e_1_3_2_55_2
  doi: 10.1038/227680a0
– ident: e_1_3_2_45_2
  doi: 10.1186/1475-2859-8-31
– ident: e_1_3_2_37_2
  doi: 10.1042/BST20130214
– ident: e_1_3_2_53_2
– ident: e_1_3_2_47_2
  doi: 10.1002/bit.24616
– ident: e_1_3_2_9_2
  doi: 10.1016/j.mib.2018.03.003
– ident: e_1_3_2_7_2
  doi: 10.1038/s41586-020-2762-2
– ident: e_1_3_2_27_2
  doi: 10.1016/S1074-5521(98)90286-1
– ident: e_1_3_2_26_2
  doi: 10.1021/cr960415w
– ident: e_1_3_2_35_2
  doi: 10.1007/s00249-015-1095-9
– ident: e_1_3_2_4_2
  doi: 10.1126/science.aba0372
– ident: e_1_3_2_44_2
  doi: 10.1016/B978-0-12-385120-8.00015-2
– ident: e_1_3_2_13_2
  doi: 10.1099/00221287-33-1-9
– ident: e_1_3_2_11_2
  doi: 10.1007/BF02873305
– ident: e_1_3_2_2_2
  doi: 10.1038/s41586-019-1894-8
– ident: e_1_3_2_34_2
  doi: 10.1021/la049207m
– ident: e_1_3_2_41_2
  doi: 10.3390/molecules24193430
– volume: 2246
  start-page: 169
  year: 2021
  end-page: 205
  ident: B48
  article-title: Linking microbes to their genes at single cell level with direct-geneFISH
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1115-9_12
– volume: 3
  start-page: 611
  year: 2018
  end-page: 621
  ident: B31
  article-title: Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0138-2
– volume: 97
  start-page: 1489
  year: 1997
  end-page: 1514
  ident: B25
  article-title: A structural basis for RNA−ligand interactions
  publication-title: Chem Rev
  doi: 10.1021/cr960415w
– volume: 25
  start-page: 559
  year: 1967
  end-page: 561
  ident: B11
  article-title: Biological activity of phi-X DNA. I. Inhibition of infectivity by streptomycin
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(67)90207-0
– ident: B51
  article-title: Allaire J . 2012 . RStudio: integrated development environment for R . RStudio , Boston, MA .
– volume: 6
  start-page: a027029
  year: 2016
  ident: B13
  article-title: Aminoglycosides: an overview
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a027029
– volume: 27
  start-page: 254
  year: 1981
  end-page: 257
  ident: B38
  article-title: Adsorption of actinophage Pal 6 to developing mycelium of Streptomyces albus
  publication-title: Can J Microbiol
  doi: 10.1139/m81-039
– volume: 87
  start-page: 1101
  year: 2015
  end-page: 1115
  ident: B45
  article-title: Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22779
– volume: 359
  year: 2018
  ident: B2
  article-title: Systematic discovery of antiphage defense systems in the microbial pangenome
  publication-title: Science
  doi: 10.1126/science.aar4120
– volume: 19
  start-page: 777
  year: 1981
  end-page: 785
  ident: B16
  article-title: Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.19.5.777
– volume: 445
  start-page: 73
  year: 1999
  end-page: 79
  ident: B28
  article-title: Arginine-aminoglycoside conjugates that bind to HIV transactivation responsive element RNA in vitro
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(99)00092-7
– volume: 29
  start-page: 1203
  year: 2010
  end-page: 1213
  ident: B14
  article-title: Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0900-2
– volume: 63
  start-page: 937
  year: 2007
  end-page: 940
  ident: B7
  article-title: How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them?
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05584.x
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: B50
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2019
– volume: 39
  start-page: 2838
  year: 2000
  end-page: 2852
  ident: B29
  article-title: Aminoglycoside−arginine conjugates that bind TAR RNA:  synthesis, characterization, and antiviral activity
  publication-title: Biochemistry
  doi: 10.1021/bi9917885
– year: 2000
  ident: B35
  publication-title: Practical streptomyces genetics: a laboratory manual. ;John Innes Foundation ;Norwich, United Kingdom
– volume: 369
  start-page: 1077
  year: 2020
  end-page: 1084
  ident: B3
  article-title: Diverse enzymatic activities mediate antiviral immunity in prokaryotes
  publication-title: Science
  doi: 10.1126/science.aba0372
– volume: 9
  start-page: 269
  year: 1964
  end-page: 276
  ident: B10
  article-title: Inhibition of reproduction of the f2 bacteriophage by streptomycin
  publication-title: Folia Microbiol
  doi: 10.1007/BF02873305
– volume: 25
  start-page: 184
  year: 2019
  end-page: 194
  ident: B4
  article-title: (Ph)ighting phages: how bacteria resist their parasites
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.01.009
– volume: 41
  start-page: 1355
  year: 2013
  end-page: 1364
  ident: B36
  article-title: Understanding and manipulating antibiotic production in actinomycetes
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20130214
– volume: 498
  start-page: 349
  year: 2011
  end-page: 361
  ident: B43
  article-title: Enzymatic assembly of overlapping DNA fragments
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-385120-8.00015-2
– volume: 5
  start-page: R277
  year: 1998
  end-page: R283
  ident: B26
  article-title: Deciphering RNA recognition: aminoglycoside binding to the hammerhead ribozyme
  publication-title: Chem Biol
  doi: 10.1016/S1074-5521(98)90286-1
– volume: 44
  start-page: 126173
  year: 2021
  ident: B49
  article-title: Gene-PROBER—a tool to design polynucleotide probes for targeting microbial genes
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2020.126173
– volume: 36
  start-page: 206
  year: 2012
  end-page: 231
  ident: B37
  article-title: Signals and regulators that govern Streptomyces development
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2011.00317.x
– volume: 61
  start-page: 135
  year: 1951
  end-page: 143
  ident: B22
  article-title: Observations on the chemical inhibition of Streptomyces griseus bacteriophage multiplication
  publication-title: J Bacteriol
  doi: 10.1128/jb.61.2.135-143.1951
– volume: 84
  year: 2020
  ident: B15
  article-title: Global organization and proposed megataxonomy of the virus world
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00061-19
– volume: 437
  start-page: 3
  year: 2005
  end-page: 6
  ident: B9
  article-title: The classic: streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/01.blo.0000175887.98112.fe
– volume: 98
  start-page: 636
  year: 2015
  end-page: 650
  ident: B47
  article-title: Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13147
– volume: 15
  start-page: 2306
  year: 2013
  end-page: 2318
  ident: B20
  article-title: Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12100
– volume: 141
  start-page: 1065
  year: 1963
  end-page: 1067
  ident: B23
  article-title: Streptomycin as an antiviral agent: mode of action
  publication-title: Science
  doi: 10.1126/science.141.3585.1065
– volume: 33
  start-page: 9
  year: 1963
  end-page: 22
  ident: B12
  article-title: The inhibition by streptomycin of certain Streptococcus bacteriophages, using host bacteria resistant to the antibiotic
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-33-1-9
– volume: 589
  start-page: 120
  year: 2021
  end-page: 124
  ident: B6
  article-title: Prokaryotic viperins produce diverse antiviral molecules
  publication-title: Nature
  doi: 10.1038/s41586-020-2762-2
– volume: 45
  start-page: 100
  year: 2018
  end-page: 108
  ident: B8
  article-title: Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2018.03.003
– volume: 564
  start-page: 283
  year: 2018
  end-page: 286
  ident: B5
  article-title: A chemical defence against phage infection
  publication-title: Nature
  doi: 10.1038/s41586-018-0767-x
– volume: 8
  start-page: 31
  year: 2009
  ident: B44
  article-title: Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-8-31
– volume: 44
  start-page: 10117
  year: 2016
  end-page: 10131
  ident: B53
  article-title: Silencing of cryptic prophages in Corynebacterium glutamicum
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw692
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  ident: B54
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 24
  start-page: 3430
  year: 2019
  ident: B40
  article-title: Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria
  publication-title: Molecules
  doi: 10.3390/molecules24193430
– volume: 9
  start-page: 714
  year: 2020
  ident: B19
  article-title: Aminoglycoside antibiotics inhibit mycobacteriophage infection
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics9100714
– volume: 44
  start-page: 16275
  year: 2005
  end-page: 16283
  ident: B21
  article-title: The kinetic mechanism of AAC3-IV aminoglycoside acetyltransferase from Escherichia coli
  publication-title: Biochemistry
  doi: 10.1021/bi051777d
– volume: 267
  start-page: 3168
  year: 1992
  end-page: 3172
  ident: B18
  article-title: Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into Escherichia coli cells
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)50710-4
– volume: 87
  year: 2021
  ident: B24
  article-title: Aminoglycosides antagonize bacteriophage proliferation, attenuating phage suppression of bacterial growth, biofilm formation, and antibiotic resistance
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00468-21
– ident: B52
  article-title: R Core Team . 2021 . R: a language and environment for statistical computing . R Foundation for Statistical Computing , Vienna, Austria .
– volume: 5
  start-page: 2755
  year: 1995
  end-page: 2760
  ident: B30
  article-title: Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/0960-894X(95)00467-8
– volume: 45
  start-page: 287
  year: 2016
  end-page: 299
  ident: B34
  article-title: Selective condensation of DNA by aminoglycoside antibiotics
  publication-title: Eur Biophys J
  doi: 10.1007/s00249-015-1095-9
– volume: 74
  start-page: 969
  year: 1993
  end-page: 976
  ident: B27
  article-title: Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90720-B
– volume: 111
  start-page: 61
  year: 1992
  end-page: 68
  ident: B41
  article-title: Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector
  publication-title: Gene
  doi: 10.1016/0378-1119(92)90603-M
– volume: 4
  start-page: 482
  year: 2018
  end-page: 501
  ident: B39
  article-title: An overview of the antimicrobial resistance mechanisms of bacteria
  publication-title: AIMS Microbiol
  doi: 10.3934/microbiol.2018.3.482
– volume: 58
  start-page: 688
  year: 2008
  end-page: 691
  ident: B17
  article-title: Classification of ‘Streptomyces tenebrarius’ Higgins and Kastner as Streptoalloteichus tenebrarius nom. rev., comb. nov., and emended description of the genus Streptoalloteichus
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.65272-0
– volume: 110
  start-page: 220
  year: 2013
  end-page: 228
  ident: B46
  article-title: Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24616
– volume: 20
  start-page: 9270
  year: 2004
  end-page: 9275
  ident: B33
  article-title: Aminoglycoside antibiotics aggregate to form starch-like fibers on negatively charged surfaces and on phage lambda-DNA
  publication-title: Langmuir
  doi: 10.1021/la049207m
– volume: 4
  year: 2019
  ident: B32
  article-title: The antibiotic neomycin enhances coxsackievirus plaque formation
  publication-title: mSphere
  doi: 10.1128/mSphere.00632-18
– year: 2001
  ident: B42
  publication-title: Molecular cloning: a laboratory manual ;3rd ed ;Cold Spring Harbor Laboratory Press ;Cold Spring Harbor, NY
– volume: 577
  start-page: 327
  year: 2020
  end-page: 336
  ident: B1
  article-title: The arms race between bacteria and their phage foes
  publication-title: Nature
  doi: 10.1038/s41586-019-1894-8
SSID ssj0000331830
Score 2.5301056
Snippet Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic...
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we...
ABSTRACT In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level....
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0078322
SubjectTerms Acetylation
Aminoglycoside antibiotics
aminoglycosides
Antibacterial activity
Antibiotics
Antiviral activity
Apramycin
Bacteria
bacteriophages
CRISPR
Defense mechanisms
E coli
Genomes
Host-Microbial Interactions
Infections
Metabolites
phage defense
phage-host interaction
Phages
Predation
Protein biosynthesis
Research Article
Restriction-modification
Streptomyces
Translation
SummonAdditionalLinks – databaseName: Public Health Database
  dbid: 8C1
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BAIkLb6ihoEUgTqxq79r7OKE0ooJL1QNIvVneh5tIzbrEaaX8e2Zsx20Q5cItjkfJWvP6Zrz7DSEfIccUoeaGWeckA6MwrAoyZZlUNk99ncs674ZNqONjfXpqToaGWztsq9zGxC5Q-8Zhj_wAYAa4JRTd_MvFL4ZTo_Dt6jBC4y65l_E0R8fUs2zssaQCLRbbLByADYMobbY0m1wfLO2iQeZsLRiOzp1U7ZLvZKeOxP9vyPPPDZQ3MtLR4_99lifk0YBF6bQ3nqfkTojPyIN-OuXmOXHT5SI2Z-cb1-BMTzqNeL6kQV5n-j3O4fOanswhHsFVv6MrUruhh5Aesf9Oq0g7-mSKO8loU1PAmjdEZxv40xfk59HXH7NvbJjJwKoik2uGCd8rzGqpqrzSIWRSe5nWXKVV7bWslRVZERB3AXYoVLBGeNBCHXKT11K8JJPYxLBHqC9qCB6iyrTXuRPCOp65yqhQ5CEtrE_IB1RJOThVW3b1CtclKq7sFFdynpDPW42VbqA1x-ka57eJfxrFL3o-j9sED1H9oxDScHdfNKuzcvDq0lsvvDU5h8AJdg5eCfWoM97iQX3hVEL2twZw_RjX2k_I-_E2eDW-qqliaC7bkssCSksI_nlCXvW2Nq4EECIWnfDjascKd5a6eycu5h1zOKB5A2Hx9b-X9YY85HjII5WM630yWa8uw1ty312tF-3qXedivwHomixo
  priority: 102
  providerName: ProQuest
Title Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle
URI https://www.ncbi.nlm.nih.gov/pubmed/35506667
https://journals.asm.org/doi/10.1128/mbio.00783-22
https://www.proquest.com/docview/3261117612
https://www.proquest.com/docview/2659603764
https://pubmed.ncbi.nlm.nih.gov/PMC9239200
https://doaj.org/article/dbd3db942070425ead619c9db48073c7
Volume 13
WOSCitedRecordID wos000795810900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: M7P
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: 8C1
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: PIMPY
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaggMQF8aawVEYgTkSb2IntHNtqV-yBKkIglVMUv2ilrYO2XaT-e2actLSIFRcuUR4jxx6PPZ-T8TeEvAMfUzjPykQbIxIwijJpnEiTTEidp9bnwucx2YSczdR8XlYHqb4wJqyjB-4Ud2q15VaXOQPbhKKg4QD5TWk17oXmJu4jB9RzsJiKczBHW013pJpMna70skWebMUTTJQ7aNYrduSLImX_33Dmn-GSB_7n_CF50ANHOu4q_IjccuExudelktw-IWa8Wob2--XWtJiAk44DbgZpkYSZXoQFnG9otYDJA6668KtA9ZZOwJfhx3LaBBq5jimGfdHWUwCGB6LTLbz0Kfl6fvZl-jHpEygkTZGJTYLe2Up0QalsrFTOZUJZkXom08ZbJbzUPCscgiRw9IV0uuQWFOddXuZe8GdkENrgXhBqCw8jnTeZsio3nGvDMtOU0hW5Swtth-QtarTuR8C6josLpmrUex31XjM2JB92Cq9Nz0GOqTAubxJ_vxf_0ZFv3CQ4wd7bCyFndrwBllT3llT_y5KG5GTX97-bAegWvIEEHDgkb_aPYQjif5UmuPZ6XTNRwDoQZup8SJ53prKvCcA5XCFC4fLIiI6qevwkLBeR5hugdwlz2Mv_0bZX5D7DfRupSJg6IYPN1bV7Te6an5vl-mpEbsu5gqOaZiNyZ3I2qz6P4ngaYShsBfeqi0_Vt19w8SL9
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAIIL70egwCIeJ1a11_bu-oBQGqgatVQ9FKk31_twE6mxS5KC8qf4jczYcdogyq0Hbkk8ctbJN9_M7OMbgLcYYxJfiJQbayVHUKQ89zLgoVQmDlwRyyKum02ovT19eJjur8Gv9iwMbatsObEmaldZmiPfwDQD3RKLbvHp9DunrlG0utq20GhgsePnP7Fkm34cfMb_950QW18O-tt80VWA50koZ5xCllPEy4HKndLeh1I7GRRCBXnhtCyUicLEU-aA0S9R3qSRQ-QXPk7jQkZ432twnZTsqNjT_XA5pxNE5CE0rSMwkeIYFdJW1lPojbEZVaTUrSNOrXo7-XQsVqJh3TTgb5nunxs2L0TArbv_2293D-4scm3Wa5zjPqz58gHcbLpvzh-C7Y1HZXV8MrcV9SxlvZLOz1SkW80G5RBfz9j-EPkW3zU71kpm5mwTwz-tL7C8ZLU8NKOdcqwqGObSF0z7c_zSR_DtSp7wMXTKqvRPgbmkQHKM8lA7HdsoMlaENk-VT2IfJMZ14Q1BIFuQxjSr6zGhMwJKVgMlE6ILH1qEZHYh207dQ04uM3-_ND9t9EouM9wkuC2NSGa8_qCaHGcL1sqccZEzaSwwMKAfI-tgvW1TZ0iIILKqC-st4M4f4xxtXXi9vIysRUtReemrs2kmZIKlMwa3uAtPGmwvR4IZMBXVeHO1gvqVoa5eKUfDWhkdq5UUaf_Zv4f1Cm5tH3zdzXYHezvP4bagAy2B5EKvQ2c2OfMv4Ib9MRtNJy9r92ZwdNU-8Rvsl4Z_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aminoglycoside+Antibiotics+Inhibit+Phage+Infection+by+Blocking+an+Early+Step+of+the+Infection+Cycle&rft.jtitle=mBio&rft.au=Larissa+Kever&rft.au=A%C3%ABl+Hardy&rft.au=Tom+Luthe&rft.au=Max+H%C3%BCnnefeld&rft.date=2022-06-28&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1128%2Fmbio.00783-22&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dbd3db942070425ead619c9db48073c7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon