Extensions of smoothing via taut strings

Suppose that we observe independent random pairs \((X_1,Y_1)\), \((X_2,Y_2)\), >..., \((X_n,Y_n)\). Our goal is to estimate regression functions such as the conditional mean or \(\beta\)--quantile of \(Y\) given \(X\), where \(0<\beta <1\). In order to achieve this we minimize criteria such...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Duembgen, Lutz, Kovac, Arne
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 29.01.2009
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Suppose that we observe independent random pairs \((X_1,Y_1)\), \((X_2,Y_2)\), >..., \((X_n,Y_n)\). Our goal is to estimate regression functions such as the conditional mean or \(\beta\)--quantile of \(Y\) given \(X\), where \(0<\beta <1\). In order to achieve this we minimize criteria such as, for instance, $$ \sum_{i=1}^n \rho(f(X_i) - Y_i) + \lambda \cdot \mathop TV\nolimits (f) $$ among all candidate functions \(f\). Here \(\rho\) is some convex function depending on the particular regression function we have in mind, \(\mathop {\rm TV}\nolimits (f)\) stands for the total variation of \(f\), and \(\lambda >0\) is some tuning parameter. This framework is extended further to include binary or Poisson regression, and to include localized total variation penalties. The latter are needed to construct estimators adapting to inhomogeneous smoothness of \(f\). For the general framework we develop noniterative algorithms for the solution of the minimization problems which are closely related to the taut string algorithm (cf. Davies and Kovac, 2001). Further we establish a connection between the present setting and monotone regression, extending previous work by Mammen and van de Geer (1997). The algorithmic considerations and numerical examples are complemented by two consistency results.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.0803.2931