Synthetic Applications of Proton-Coupled Electron Transfer

Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule ac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Accounts of chemical research Ročník 49; číslo 8; s. 1546
Hlavní autori: Gentry, Emily C, Knowles, Robert R
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 16.08.2016
Predmet:
ISSN:1520-4898, 1520-4898
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO.
AbstractList Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO.Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO.
Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO.
Author Knowles, Robert R
Gentry, Emily C
Author_xml – sequence: 1
  givenname: Emily C
  surname: Gentry
  fullname: Gentry, Emily C
  organization: Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
– sequence: 2
  givenname: Robert R
  surname: Knowles
  fullname: Knowles, Robert R
  organization: Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27472068$$D View this record in MEDLINE/PubMed
BookMark eNpNj11LwzAYhYNM3If-A5FeetOZvE2T1Lsx5gcMFJzXJUnfYqVLapJe7N87cYJX54HzcODMycR5h4RcM7pkFNidtnGprfWjS3EpDKUg4YzMWAk056pSk388JfMYP-nR4UJekClILoEKNSP3bweXPjB1NlsNQ99ZnTrvYubb7DX45F2-9uPQY5NterQpeJftgnaxxXBJzlvdR7w65YK8P2x266d8-_L4vF5tc12yMuWG08qCqoqmMYpzamQrBWNUcFvJQjbQMIMKOKDCEguBulW2aNqyMpX66Rfk9nd3CP5rxJjqfRct9r126MdYM8UAQAgQR_XmpI5mj009hG6vw6H--wvf7bJbjw
CitedBy_id crossref_primary_10_1021_jacs_9b12490
crossref_primary_10_1002_chem_201904483
crossref_primary_10_1038_s41467_020_16369_4
crossref_primary_10_1002_ange_202507789
crossref_primary_10_1002_chem_202500622
crossref_primary_10_1021_jacs_0c05183
crossref_primary_10_1021_jacs_8b12957
crossref_primary_10_1002_chem_201804873
crossref_primary_10_1073_pnas_2005122117
crossref_primary_10_1002_ange_202015773
crossref_primary_10_1021_jacs_0c07004
crossref_primary_10_1063_5_0170022
crossref_primary_10_1002_anie_201914390
crossref_primary_10_1002_ange_201800319
crossref_primary_10_1055_a_2646_8383
crossref_primary_10_1002_anie_201708138
crossref_primary_10_1002_ange_202406845
crossref_primary_10_1002_chem_202201654
crossref_primary_10_1002_cctc_202000741
crossref_primary_10_1002_ajoc_201600576
crossref_primary_10_1002_anie_201804966
crossref_primary_10_1021_acs_chemrev_4c00869
crossref_primary_10_1002_anie_201800144
crossref_primary_10_1021_acscatal_7b02117
crossref_primary_10_1039_D4SC05623J
crossref_primary_10_1002_anie_202105285
crossref_primary_10_1002_anie_202501924
crossref_primary_10_1016_j_jechem_2024_11_032
crossref_primary_10_1002_smtd_202301359
crossref_primary_10_1016_j_poly_2023_116342
crossref_primary_10_1002_ange_201800667
crossref_primary_10_1002_EXP_20210063
crossref_primary_10_1016_S1872_2067_20_63702_0
crossref_primary_10_1039_D0SC02131H
crossref_primary_10_1002_ejoc_202100049
crossref_primary_10_1021_jacs_0c08595
crossref_primary_10_1038_s44221_024_00281_y
crossref_primary_10_1021_jacs_8b07102
crossref_primary_10_1002_chem_202101705
crossref_primary_10_1246_bcsj_20200376
crossref_primary_10_1039_C9SC00711C
crossref_primary_10_3390_cryst10030157
crossref_primary_10_1073_pnas_2316032121
crossref_primary_10_1002_ange_201916423
crossref_primary_10_1021_jacs_2c06677
crossref_primary_10_1039_D1QO01613J
crossref_primary_10_1139_cjc_2020_0014
crossref_primary_10_1002_tcr_202100048
crossref_primary_10_1073_pnas_1707318114
crossref_primary_10_1039_D2QO01392D
crossref_primary_10_1039_D5QO00099H
crossref_primary_10_1021_acs_orglett_5c03238
crossref_primary_10_1039_D0EE03300F
crossref_primary_10_1002_ange_201804929
crossref_primary_10_1002_chem_202201761
crossref_primary_10_1039_D0QO01478H
crossref_primary_10_3390_molecules25061443
crossref_primary_10_1016_j_chempr_2020_04_022
crossref_primary_10_1002_anie_201916423
crossref_primary_10_1016_j_checat_2023_100807
crossref_primary_10_1515_psr_2017_0173
crossref_primary_10_1021_acs_joc_5c00532
crossref_primary_10_1002_ange_202501924
crossref_primary_10_1002_cssc_202002032
crossref_primary_10_1002_adsc_202401436
crossref_primary_10_1002_cssc_202001187
crossref_primary_10_1016_j_nanoen_2019_04_037
crossref_primary_10_1039_D0QO00276C
crossref_primary_10_1038_s41929_024_01194_5
crossref_primary_10_1021_jacs_4c16003
crossref_primary_10_1055_a_1833_9025
crossref_primary_10_1002_adsc_201901253
crossref_primary_10_1002_ange_201910169
crossref_primary_10_1039_D0SC01820A
crossref_primary_10_1007_s43630_021_00135_6
crossref_primary_10_1002_smtd_202300588
crossref_primary_10_1002_anie_201804929
crossref_primary_10_1016_j_chempr_2024_03_010
crossref_primary_10_1016_j_tetlet_2022_153808
crossref_primary_10_1002_anie_202015773
crossref_primary_10_1021_jacs_7b06319
crossref_primary_10_1002_anie_202406845
crossref_primary_10_1002_ange_201914390
crossref_primary_10_1002_ange_201800144
crossref_primary_10_1039_C7CC04941B
crossref_primary_10_1021_jacs_0c08673
crossref_primary_10_1039_C8SC05164J
crossref_primary_10_1002_anie_201709766
crossref_primary_10_1021_jacs_1c05852
crossref_primary_10_1038_s41467_022_31956_3
crossref_primary_10_1038_s41467_021_26170_6
crossref_primary_10_1039_D4QO00310A
crossref_primary_10_1002_smll_202311642
crossref_primary_10_1002_chem_202304002
crossref_primary_10_1016_j_tetlet_2024_155334
crossref_primary_10_1002_adsc_202301220
crossref_primary_10_1021_jacs_9b09496
crossref_primary_10_1038_s41467_025_62876_7
crossref_primary_10_1002_ange_201709766
crossref_primary_10_1007_s11426_025_2876_7
crossref_primary_10_1016_j_cclet_2024_110582
crossref_primary_10_1002_ange_201804966
crossref_primary_10_1021_jacs_8b10250
crossref_primary_10_3762_bjoc_16_114
crossref_primary_10_1002_chem_202003424
crossref_primary_10_1002_ange_202008040
crossref_primary_10_1039_D2CS00013J
crossref_primary_10_1055_a_1517_7329
crossref_primary_10_1002_chem_202402917
crossref_primary_10_1039_D5QO01036E
crossref_primary_10_1002_anie_202016156
crossref_primary_10_1021_jacs_2c10553
crossref_primary_10_1002_aenm_202402942
crossref_primary_10_1021_jacs_7b08086
crossref_primary_10_1021_jacs_0c12799
crossref_primary_10_1016_j_tetlet_2018_04_060
crossref_primary_10_1021_jacs_7b11144
crossref_primary_10_1021_acscentsci_4c00970
crossref_primary_10_1002_anie_201612516
crossref_primary_10_1002_ijch_201900166
crossref_primary_10_1002_ange_201909492
crossref_primary_10_1021_acsami_5c12561
crossref_primary_10_1002_cctc_202201553
crossref_primary_10_1021_jacs_2c01735
crossref_primary_10_1039_D2QO00412G
crossref_primary_10_1021_jacs_4c06122
crossref_primary_10_6023_cjoc202406018
crossref_primary_10_1002_chem_201705707
crossref_primary_10_1002_ange_201805632
crossref_primary_10_1002_adsc_202300281
crossref_primary_10_1002_anie_201910169
crossref_primary_10_1002_anie_202008630
crossref_primary_10_1002_chem_202302770
crossref_primary_10_1016_j_jphotochem_2022_114358
crossref_primary_10_1093_nsr_nwae271
crossref_primary_10_1002_solr_202000444
crossref_primary_10_1002_adsc_202300040
crossref_primary_10_1002_ejic_201900975
crossref_primary_10_1002_anie_202317333
crossref_primary_10_1002_adfm_202415558
crossref_primary_10_1021_jacs_4c08795
crossref_primary_10_1002_cjoc_202000246
crossref_primary_10_1002_anie_201913320
crossref_primary_10_1016_j_checat_2021_04_004
crossref_primary_10_1016_j_jphotochem_2020_112777
crossref_primary_10_1002_anie_201800667
crossref_primary_10_1016_j_checat_2021_04_008
crossref_primary_10_1055_s_0040_1707183
crossref_primary_10_1039_D3QO01059G
crossref_primary_10_1002_anie_202003070
crossref_primary_10_1021_jacs_8b04104
crossref_primary_10_1002_anie_202319515
crossref_primary_10_1039_D1SC02503A
crossref_primary_10_1002_ange_202102597
crossref_primary_10_1002_ange_202101266
crossref_primary_10_1002_cctc_202100304
crossref_primary_10_1002_anie_201800319
crossref_primary_10_1002_ange_201804445
crossref_primary_10_59761_RCR5123
crossref_primary_10_1002_ange_202011657
crossref_primary_10_1002_anie_202107253
crossref_primary_10_1039_D1QO00634G
crossref_primary_10_1002_anie_202110304
crossref_primary_10_1016_j_chempr_2021_05_005
crossref_primary_10_1021_jacs_7b01016
crossref_primary_10_1021_jacs_0c09106
crossref_primary_10_1039_D2QO01605B
crossref_primary_10_1002_chem_201900879
crossref_primary_10_1021_jacs_9b00193
crossref_primary_10_1002_anie_201809431
crossref_primary_10_1002_cctc_201901373
crossref_primary_10_1016_j_apenergy_2019_114414
crossref_primary_10_1055_a_1992_6707
crossref_primary_10_1002_ejoc_202000144
crossref_primary_10_1021_jacs_8b13451
crossref_primary_10_1002_ange_201805644
crossref_primary_10_1002_ange_202115110
crossref_primary_10_1002_anie_202010801
crossref_primary_10_1002_advs_202402272
crossref_primary_10_1021_jacs_4c09558
crossref_primary_10_1002_ejoc_202200326
crossref_primary_10_1002_anie_202507789
crossref_primary_10_1039_D3SC05229J
crossref_primary_10_1002_ange_201708138
crossref_primary_10_1039_C9SC00302A
crossref_primary_10_1002_anie_201807247
crossref_primary_10_1021_jacs_9b04303
crossref_primary_10_1002_anie_202101835
crossref_primary_10_1021_jacs_0c09363
crossref_primary_10_1038_s41467_021_26857_w
crossref_primary_10_1002_ange_202206058
crossref_primary_10_1002_anie_202415715
crossref_primary_10_59761_RCR5104
crossref_primary_10_1002_anie_202301815
crossref_primary_10_1016_j_ccr_2019_213081
crossref_primary_10_1021_jacs_9b03680
crossref_primary_10_1021_jacs_9b02117
crossref_primary_10_1039_D1SC07237D
crossref_primary_10_1016_j_checat_2021_12_015
crossref_primary_10_1021_jacsau_5c00374
crossref_primary_10_1021_jacs_3c12513
crossref_primary_10_1002_cctc_202100620
crossref_primary_10_1039_D2QO00528J
crossref_primary_10_1016_j_mcat_2022_112788
crossref_primary_10_1002_ange_202003959
crossref_primary_10_1002_chem_202301017
crossref_primary_10_1016_j_tetlet_2021_152915
crossref_primary_10_1021_jacs_1c09484
crossref_primary_10_1021_jacs_7b13131
crossref_primary_10_1039_D2SC04463C
crossref_primary_10_1002_zaac_202100077
crossref_primary_10_1039_D2QO01979E
crossref_primary_10_1039_D4QO02344G
crossref_primary_10_1002_adsc_201700369
crossref_primary_10_1055_s_0040_1706042
crossref_primary_10_1039_C8QO00893K
crossref_primary_10_1002_ange_202319515
crossref_primary_10_1002_ange_202317333
crossref_primary_10_1021_jacs_2c11364
crossref_primary_10_1021_acs_inorgchem_5c01792
crossref_primary_10_1021_jacs_9b10870
crossref_primary_10_1002_anie_201805395
crossref_primary_10_1002_cctc_202301572
crossref_primary_10_1002_chem_202401669
crossref_primary_10_1039_C7CS00572E
crossref_primary_10_1002_ange_202011738
crossref_primary_10_1021_acs_inorgchem_5c02643
crossref_primary_10_1002_chem_201901762
crossref_primary_10_1039_D3SC00919J
crossref_primary_10_1002_adsc_201801289
crossref_primary_10_1002_anie_202011657
crossref_primary_10_1093_chemle_upae088
crossref_primary_10_1002_ange_201700049
crossref_primary_10_1016_j_watres_2024_121485
crossref_primary_10_1002_chem_202501148
crossref_primary_10_1002_anie_202208831
crossref_primary_10_1016_j_jphotochem_2017_09_027
crossref_primary_10_1002_cssc_201701382
crossref_primary_10_1002_chem_202502233
crossref_primary_10_1016_j_tet_2024_134386
crossref_primary_10_1021_jacs_2c01458
crossref_primary_10_1021_jacs_8b06938
crossref_primary_10_1002_adsc_202201234
crossref_primary_10_1021_jacs_4c02610
crossref_primary_10_1002_ajoc_202300580
crossref_primary_10_1038_s41467_022_32238_8
crossref_primary_10_1002_chem_201605931
crossref_primary_10_1002_ejoc_201801378
crossref_primary_10_1021_jacs_7b13616
crossref_primary_10_1002_cctc_201901266
crossref_primary_10_1002_ange_201612516
crossref_primary_10_1002_anie_201706724
crossref_primary_10_1002_ange_202113658
crossref_primary_10_1038_s41467_019_12722_4
crossref_primary_10_1016_j_cej_2022_138357
crossref_primary_10_1016_j_trechm_2019_01_008
crossref_primary_10_1002_chem_202102477
crossref_primary_10_1002_cssc_202500219
crossref_primary_10_1039_C9SC03429C
crossref_primary_10_1016_j_electacta_2017_07_072
crossref_primary_10_1039_C9SC04941J
crossref_primary_10_1002_anie_202215591
crossref_primary_10_1002_chem_201802907
crossref_primary_10_1021_jacs_2c07099
crossref_primary_10_1002_anie_202212083
crossref_primary_10_1002_ange_201706724
crossref_primary_10_1002_bkcs_12124
crossref_primary_10_1002_ange_202411867
crossref_primary_10_3390_ma16072835
crossref_primary_10_1016_j_jcat_2025_116318
crossref_primary_10_1016_j_chempr_2024_08_002
crossref_primary_10_3390_molecules28114275
crossref_primary_10_1002_ajoc_202300160
crossref_primary_10_1038_s41467_024_53351_w
crossref_primary_10_1002_ejic_201701190
crossref_primary_10_1002_anie_201700049
crossref_primary_10_1002_anie_202113658
crossref_primary_10_1039_C9QO00536F
crossref_primary_10_1021_jacs_0c03239
crossref_primary_10_1002_ange_201701329
crossref_primary_10_1039_D1QO00727K
crossref_primary_10_1002_chem_202000517
crossref_primary_10_1002_ejoc_201601626
crossref_primary_10_1007_s11426_024_2259_7
crossref_primary_10_1002_celc_202100617
crossref_primary_10_1002_ange_201809601
crossref_primary_10_1016_j_checat_2022_05_021
crossref_primary_10_1039_D0SC00819B
crossref_primary_10_1002_ange_202016156
crossref_primary_10_1002_adsc_202100852
crossref_primary_10_3762_bjoc_14_251
crossref_primary_10_1002_anie_202011738
crossref_primary_10_1002_cjoc_202300096
crossref_primary_10_1002_cjoc_201800455
crossref_primary_10_1002_chem_201605971
crossref_primary_10_3390_ijms25126341
crossref_primary_10_31635_ccschem_019_20180026
crossref_primary_10_1055_a_1385_9398
crossref_primary_10_1002_ange_201805395
crossref_primary_10_1002_celc_202400301
crossref_primary_10_1038_s41467_022_29462_7
crossref_primary_10_1039_C9RA01939A
crossref_primary_10_1002_chem_202300796
crossref_primary_10_1021_acs_orglett_5c00799
crossref_primary_10_1007_s11426_025_2803_3
crossref_primary_10_1002_cctc_202001690
crossref_primary_10_1002_anie_201909492
crossref_primary_10_1016_j_apenergy_2019_114119
crossref_primary_10_1038_s41557_021_00732_z
crossref_primary_10_1039_D5DT00419E
crossref_primary_10_3390_molecules27123745
crossref_primary_10_1002_cctc_202300537
crossref_primary_10_1016_j_gresc_2025_04_005
crossref_primary_10_1002_ajoc_202300275
crossref_primary_10_1002_cptc_202000085
crossref_primary_10_1016_j_ccr_2023_215607
crossref_primary_10_1002_anie_201809601
crossref_primary_10_1039_D0CS00535E
crossref_primary_10_1016_j_chempr_2025_102446
crossref_primary_10_1038_s41467_019_10441_4
crossref_primary_10_1002_anie_202115110
crossref_primary_10_1021_jacs_2c05520
crossref_primary_10_1002_ejoc_202000746
crossref_primary_10_1002_ange_202415715
crossref_primary_10_1002_adsc_202000761
crossref_primary_10_1002_ange_202010801
crossref_primary_10_1002_ejoc_202301215
crossref_primary_10_1002_chem_201802606
crossref_primary_10_1002_cptc_202300306
crossref_primary_10_1055_a_1608_5633
crossref_primary_10_1002_anie_202411867
crossref_primary_10_1007_s11426_021_1019_2
crossref_primary_10_1002_anie_201701329
crossref_primary_10_1002_chem_202101539
crossref_primary_10_1021_jacs_9b13975
crossref_primary_10_1002_ange_202105285
crossref_primary_10_1021_jacs_0c11911
crossref_primary_10_1021_jacs_9b12519
crossref_primary_10_1016_j_tetlet_2020_152369
crossref_primary_10_1002_chem_201903438
crossref_primary_10_1021_acs_inorgchem_5c01823
crossref_primary_10_1038_s41557_024_01502_3
crossref_primary_10_1093_chemle_upae111
crossref_primary_10_1039_D1SC03344A
crossref_primary_10_1002_ange_201809431
crossref_primary_10_1002_EXP_20240237
crossref_primary_10_1002_celc_202100364
crossref_primary_10_1002_adma_202209552
crossref_primary_10_1002_ange_202208831
crossref_primary_10_1002_ejic_201601403
crossref_primary_10_1021_jacs_5c04000
crossref_primary_10_1002_ange_202110304
crossref_primary_10_1002_ajoc_201600512
crossref_primary_10_1063_5_0284337
crossref_primary_10_1002_ejoc_201601445
crossref_primary_10_1002_cjoc_202400276
crossref_primary_10_1002_adsc_202100260
crossref_primary_10_1021_acs_accounts_5c00342
crossref_primary_10_1002_chem_202200264
crossref_primary_10_1002_cphc_202400928
crossref_primary_10_1039_D3QO00671A
crossref_primary_10_1002_ange_202101835
crossref_primary_10_1038_s41467_022_32623_3
crossref_primary_10_1002_chin_201644200
crossref_primary_10_1002_ange_201807247
crossref_primary_10_1021_jacs_7b05165
crossref_primary_10_1002_ejic_201901135
crossref_primary_10_1038_s41467_022_35249_7
crossref_primary_10_1016_j_apcatb_2021_120946
crossref_primary_10_3762_bjoc_20_59
crossref_primary_10_1038_s41929_022_00841_z
crossref_primary_10_1039_D5GC03208C
crossref_primary_10_1002_ejoc_202401149
crossref_primary_10_1002_ange_202107253
crossref_primary_10_1039_D2DT00345G
crossref_primary_10_1002_ange_201913320
crossref_primary_10_1002_chem_201900268
crossref_primary_10_1002_chem_201800755
crossref_primary_10_1002_ange_202003070
crossref_primary_10_1021_acs_orglett_5c01020
crossref_primary_10_1021_jacs_7b10529
crossref_primary_10_1039_D0SC04542J
crossref_primary_10_1002_adsc_202100205
crossref_primary_10_1002_ange_202215591
crossref_primary_10_1002_ange_202212083
crossref_primary_10_1016_j_tetlet_2020_152059
crossref_primary_10_1002_anie_202102597
crossref_primary_10_1021_jacs_0c07965
crossref_primary_10_1002_anie_202101266
crossref_primary_10_1002_ange_202008630
crossref_primary_10_1021_acs_inorgchem_5c02720
crossref_primary_10_1002_anie_201805632
crossref_primary_10_1039_D1SC03019A
crossref_primary_10_1093_chemle_upaf134
crossref_primary_10_1002_cplu_202400348
crossref_primary_10_1002_anie_202206058
crossref_primary_10_1021_jacs_9b07370
crossref_primary_10_1039_D2SC05198B
crossref_primary_10_1002_adsc_201800677
crossref_primary_10_1002_anie_202003959
crossref_primary_10_1016_j_jphotochem_2024_115491
crossref_primary_10_3390_org4040033
crossref_primary_10_1038_s41467_024_47568_y
crossref_primary_10_1063_5_0220777
crossref_primary_10_1039_D1SC01028J
crossref_primary_10_1039_C7CS00619E
crossref_primary_10_1002_chem_201901397
crossref_primary_10_3762_bjoc_20_27
crossref_primary_10_1021_acs_langmuir_5c01190
crossref_primary_10_1007_s11426_020_9958_6
crossref_primary_10_1016_j_ccr_2023_215441
crossref_primary_10_1055_a_1691_0449
crossref_primary_10_1002_ejoc_201601485
crossref_primary_10_1021_acs_chemrev_5c00074
crossref_primary_10_1038_s41467_019_13524_4
crossref_primary_10_1055_a_2457_0146
crossref_primary_10_1016_S1872_2067_21_63928_1
crossref_primary_10_1002_anie_202008040
crossref_primary_10_1002_celc_201900080
crossref_primary_10_1002_anie_201804445
crossref_primary_10_1002_chem_202402333
crossref_primary_10_1038_s41467_024_49337_3
crossref_primary_10_1039_D0QO00171F
crossref_primary_10_1002_ejoc_201601493
crossref_primary_10_1039_D2QO00148A
crossref_primary_10_1002_chem_202300609
crossref_primary_10_1002_ange_202301815
crossref_primary_10_1002_anie_201805644
crossref_primary_10_1038_s41467_021_23447_8
crossref_primary_10_1021_jacs_2c04467
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.accounts.6b00272
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
ExternalDocumentID 27472068
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM113105
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YIN
YZZ
ZCA
~02
7X8
ABBLG
ABLBI
ABUFD
AETEA
ID FETCH-LOGICAL-a515t-b409c2893ddb8440b7f7611064c9737d2d1be8242e8e5e36eaf8c3df59b9837d2
IEDL.DBID 7X8
ISICitedReferencesCount 613
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381654700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Sun Nov 09 14:41:40 EST 2025
Wed Feb 19 02:44:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a515t-b409c2893ddb8440b7f7611064c9737d2d1be8242e8e5e36eaf8c3df59b9837d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1021/acs.accounts.6b00272
PMID 27472068
PQID 1812226626
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1812226626
pubmed_primary_27472068
PublicationCentury 2000
PublicationDate 2016-08-16
PublicationDateYYYYMMDD 2016-08-16
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2016
References 20712320 - J Am Chem Soc. 2010 Sep 8;132(35):12299-306
20110502 - Science. 2010 Jan 29;327(5965):566-71
19569636 - J Am Chem Soc. 2009 Jul 29;131(29):9874-5
24428640 - J Am Chem Soc. 2014 Jan 29;136(4):1300-3
26439818 - J Am Chem Soc. 2015 Oct 28;137(42):13492-5
16873123 - Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1351-64
19807148 - Acc Chem Res. 2009 Dec 21;42(12):1881-9
17017787 - J Am Chem Soc. 2006 Oct 11;128(40):13076-83
17243807 - J Am Chem Soc. 2007 Jan 31;129(4):770-1
15250745 - Chem Rev. 2004 Jul;104(7):3371-404
26273964 - J Am Chem Soc. 2015 Sep 9;137(35):11526-31
15771515 - J Am Chem Soc. 2005 Mar 23;127(11):3807-16
16218613 - J Am Chem Soc. 2005 Oct 19;127(41):14204-5
27094541 - Phys Chem Chem Phys. 2016 Apr 28;18(16):11374-82
25427140 - J Am Chem Soc. 2014 Dec 17;136(50):17362-5
25232995 - J Am Chem Soc. 2014 Oct 15;136(41):14389-92
19182970 - J Phys Chem A. 2009 Mar 12;113(10):2117-26
15192224 - Science. 2004 Jun 11;304(5677):1653-6
22337565 - Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3266-70
18335937 - J Am Chem Soc. 2008 Apr 2;130(13):4250-2
20722395 - J Am Chem Soc. 2010 Sep 15;132(36):12748-56
22702235 - Chem Rev. 2012 Jul 11;112(7):4016-93
26166022 - J Am Chem Soc. 2015 Jul 29;137(29):9226-9
12914498 - Chem Rev. 2003 Aug;103(8):3263-96
25719966 - J Am Chem Soc. 2015 Mar 18;137(10):3498-501
24215561 - J Am Chem Soc. 2013 Nov 27;135(47):17735-8
25974714 - Angew Chem Int Ed Engl. 2015 May 26;54(22):6400-41
11878977 - J Am Chem Soc. 2002 Mar 13;124(10):2233-44
16144398 - J Am Chem Soc. 2005 Sep 14;127(36):12513-5
25945955 - J Am Chem Soc. 2015 May 27;137(20):6440-3
22984066 - Science. 2012 Sep 14;337(6100):1322-5
12693923 - Acc Chem Res. 2003 Apr;36(4):255-63
23343354 - Inorg Chem. 2013 Feb 4;52(3):1591-603
20925411 - Chem Rev. 2010 Dec 8;110(12):6961-7001
20215463 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5282-7
19275235 - J Am Chem Soc. 2009 Apr 1;131(12):4335-45
23506151 - J Am Chem Soc. 2013 Mar 27;135(12):4640-3
23796403 - J Am Chem Soc. 2013 Jul 10;135(27):10022-5
References_xml – reference: 19275235 - J Am Chem Soc. 2009 Apr 1;131(12):4335-45
– reference: 23796403 - J Am Chem Soc. 2013 Jul 10;135(27):10022-5
– reference: 15192224 - Science. 2004 Jun 11;304(5677):1653-6
– reference: 24215561 - J Am Chem Soc. 2013 Nov 27;135(47):17735-8
– reference: 17243807 - J Am Chem Soc. 2007 Jan 31;129(4):770-1
– reference: 25232995 - J Am Chem Soc. 2014 Oct 15;136(41):14389-92
– reference: 26166022 - J Am Chem Soc. 2015 Jul 29;137(29):9226-9
– reference: 19182970 - J Phys Chem A. 2009 Mar 12;113(10):2117-26
– reference: 27094541 - Phys Chem Chem Phys. 2016 Apr 28;18(16):11374-82
– reference: 11878977 - J Am Chem Soc. 2002 Mar 13;124(10):2233-44
– reference: 18335937 - J Am Chem Soc. 2008 Apr 2;130(13):4250-2
– reference: 15771515 - J Am Chem Soc. 2005 Mar 23;127(11):3807-16
– reference: 15250745 - Chem Rev. 2004 Jul;104(7):3371-404
– reference: 25719966 - J Am Chem Soc. 2015 Mar 18;137(10):3498-501
– reference: 20925411 - Chem Rev. 2010 Dec 8;110(12):6961-7001
– reference: 12693923 - Acc Chem Res. 2003 Apr;36(4):255-63
– reference: 20722395 - J Am Chem Soc. 2010 Sep 15;132(36):12748-56
– reference: 23506151 - J Am Chem Soc. 2013 Mar 27;135(12):4640-3
– reference: 19807148 - Acc Chem Res. 2009 Dec 21;42(12):1881-9
– reference: 20712320 - J Am Chem Soc. 2010 Sep 8;132(35):12299-306
– reference: 20110502 - Science. 2010 Jan 29;327(5965):566-71
– reference: 17017787 - J Am Chem Soc. 2006 Oct 11;128(40):13076-83
– reference: 16144398 - J Am Chem Soc. 2005 Sep 14;127(36):12513-5
– reference: 20215463 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5282-7
– reference: 22337565 - Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3266-70
– reference: 24428640 - J Am Chem Soc. 2014 Jan 29;136(4):1300-3
– reference: 19569636 - J Am Chem Soc. 2009 Jul 29;131(29):9874-5
– reference: 16873123 - Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1351-64
– reference: 23343354 - Inorg Chem. 2013 Feb 4;52(3):1591-603
– reference: 22984066 - Science. 2012 Sep 14;337(6100):1322-5
– reference: 25427140 - J Am Chem Soc. 2014 Dec 17;136(50):17362-5
– reference: 22702235 - Chem Rev. 2012 Jul 11;112(7):4016-93
– reference: 26273964 - J Am Chem Soc. 2015 Sep 9;137(35):11526-31
– reference: 16218613 - J Am Chem Soc. 2005 Oct 19;127(41):14204-5
– reference: 25974714 - Angew Chem Int Ed Engl. 2015 May 26;54(22):6400-41
– reference: 12914498 - Chem Rev. 2003 Aug;103(8):3263-96
– reference: 26439818 - J Am Chem Soc. 2015 Oct 28;137(42):13492-5
– reference: 25945955 - J Am Chem Soc. 2015 May 27;137(20):6440-3
SSID ssj0002467
Score 2.6677883
Snippet Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1546
SubjectTerms Alkenes - chemistry
Amides - chemical synthesis
Catalysis
Chemistry Techniques, Synthetic - methods
Cyclization
Electrons
Heterocyclic Compounds, 1-Ring - chemical synthesis
Ketones - chemistry
Lactones - chemical synthesis
Models, Chemical
Oxidation-Reduction
Protons
Stereoisomerism
Title Synthetic Applications of Proton-Coupled Electron Transfer
URI https://www.ncbi.nlm.nih.gov/pubmed/27472068
https://www.proquest.com/docview/1812226626
Volume 49
WOSCitedRecordID wos000381654700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3KvgaXZs0F19kjA0fdAy8sLfSJqcgSDvXTfDfe5K1zBdB8KUvoZAc0nzfd05zPkKupHHlMIioFjEKlFR2aKY00JBJprlQ2vp2DK8PcjhU47Ee1Qm3qv6tsjkT_UFtS-Ny5DcOiZAqIP--m3xQ5xrlqqu1hcYqaTGkMm5Xy_GyW3jEvYMsQlSHcqVVc3UuCm9SU-GEvR9DdS0cVPkewb-QTA82g-3_TnOHbNU0M-gu9sUuWYFij2z0Gne3fXL79FUg98PhoPujhh2UeTCals5XuFfOJ-9gg35tlBN4WMthekBeBv3n3j2tfRRoimxlRjPUcAaFFbM2U5x3MplLgbAvuNGSSRvZMAOFWA0KYmAC0lwZZvNYZ1q58UOyVpQFHJOAhSnqHQyljQy3iqPYk4DrNUjU4wigTS6bsCS4IFd8SAso51WyDEybHC1im0wWDTUSp4yjjlAnf3j7lGwiZxEurRuKM9LK8SuFc7JuPmdv1fTCbwB8DkeP38_puX0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Applications+of+Proton-Coupled+Electron+Transfer&rft.jtitle=Accounts+of+chemical+research&rft.au=Gentry%2C+Emily+C&rft.au=Knowles%2C+Robert+R&rft.date=2016-08-16&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=49&rft.issue=8&rft.spage=1546&rft_id=info:doi/10.1021%2Facs.accounts.6b00272&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon