Synthetic Applications of Proton-Coupled Electron Transfer
Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule ac...
Uložené v:
| Vydané v: | Accounts of chemical research Ročník 49; číslo 8; s. 1546 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
16.08.2016
|
| Predmet: | |
| ISSN: | 1520-4898, 1520-4898 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO. |
|---|---|
| AbstractList | Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO.Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO. Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers (PCETs). PCETs are known to operate in numerous important biological redox processes, as well as recent inorganic technologies for small molecule activation. These studies suggest that PCET catalysis might also function as a general mode of substrate activation in organic synthesis. Over the past three years, our group has worked to advance this hypothesis and to demonstrate the synthetic utility of PCET through the development of novel catalytic radical chemistries. The central aim of these efforts has been to demonstrate the ability of PCET to homolytically activate a wide variety of common organic functional groups that are energetically inaccessible using known molecular H atom transfer catalysts. To do so, we made use of a simple formalism first introduced by Mayer and co-workers that allowed us to predict the thermodynamic capacity of any oxidant/base or reductant/acid pair to formally add or remove H· from a given substrate. With this insight, we were able to rationally select catalyst combinations thermodynamically competent to homolyze the extraordinarily strong E-H σ-bonds found in many common protic functional groups (BDFEs > 100 kcal/mol) or to form unusually weak bonds to hydrogen via the reductive action of common organic π-systems (BDFEs < 35 kcal/mol). These ideas were reduced to practice through the development of new catalyst systems for reductive PCET activations of ketones and oxidative PCET activation of amide N-H bonds to directly furnish reactive ketyl and amidyl radicals, respectively. In both systems, the reaction outcomes were found to be successfully predicted using the effective bond strength formalism, suggesting that these simple thermochemical considerations can provide useful and actionable insights into PCET reaction design. The ability of PCET catalysis to control enantioselectivity in free radical processes has also been established. Specifically, multisite PCET requires the formation of a pre-equilibrium hydrogen bond between the substrate and a proton donor/acceptor prior to charge transfer. We recognized that these H-bond interfaces persist following the PCET event, resulting in the formation of noncovalent complexes of the nascent radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond-forming steps. We discuss our efforts to capitalize on this understanding via the development of a catalytic protocol for enantioselective aza-pinacol cyclizations. Lastly, we highlight an alternative PCET mechanism that exploits the ability of redox-active metals to homolytically weaken the bonds in coordinated ligands, enabling nominally strong bonds (BDFEs ∼ 100 kcal) to be abstracted by weak H atom acceptors with concomitant oxidation of the metal center. This "soft homolysis" mechanism enables the generation of metalated intermediates from protic substrates under completely neutral conditions. The first example of this form of catalysis is presented in the context of a catalytic C-N bond forming reaction jointly mediated by bulky titanocene complexes and the stable nitroxyl radical TEMPO. |
| Author | Knowles, Robert R Gentry, Emily C |
| Author_xml | – sequence: 1 givenname: Emily C surname: Gentry fullname: Gentry, Emily C organization: Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States – sequence: 2 givenname: Robert R surname: Knowles fullname: Knowles, Robert R organization: Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27472068$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj11LwzAYhYNM3If-A5FeetOZvE2T1Lsx5gcMFJzXJUnfYqVLapJe7N87cYJX54HzcODMycR5h4RcM7pkFNidtnGprfWjS3EpDKUg4YzMWAk056pSk388JfMYP-nR4UJekClILoEKNSP3bweXPjB1NlsNQ99ZnTrvYubb7DX45F2-9uPQY5NterQpeJftgnaxxXBJzlvdR7w65YK8P2x266d8-_L4vF5tc12yMuWG08qCqoqmMYpzamQrBWNUcFvJQjbQMIMKOKDCEguBulW2aNqyMpX66Rfk9nd3CP5rxJjqfRct9r126MdYM8UAQAgQR_XmpI5mj009hG6vw6H--wvf7bJbjw |
| CitedBy_id | crossref_primary_10_1021_jacs_9b12490 crossref_primary_10_1002_chem_201904483 crossref_primary_10_1038_s41467_020_16369_4 crossref_primary_10_1002_ange_202507789 crossref_primary_10_1002_chem_202500622 crossref_primary_10_1021_jacs_0c05183 crossref_primary_10_1021_jacs_8b12957 crossref_primary_10_1002_chem_201804873 crossref_primary_10_1073_pnas_2005122117 crossref_primary_10_1002_ange_202015773 crossref_primary_10_1021_jacs_0c07004 crossref_primary_10_1063_5_0170022 crossref_primary_10_1002_anie_201914390 crossref_primary_10_1002_ange_201800319 crossref_primary_10_1055_a_2646_8383 crossref_primary_10_1002_anie_201708138 crossref_primary_10_1002_ange_202406845 crossref_primary_10_1002_chem_202201654 crossref_primary_10_1002_cctc_202000741 crossref_primary_10_1002_ajoc_201600576 crossref_primary_10_1002_anie_201804966 crossref_primary_10_1021_acs_chemrev_4c00869 crossref_primary_10_1002_anie_201800144 crossref_primary_10_1021_acscatal_7b02117 crossref_primary_10_1039_D4SC05623J crossref_primary_10_1002_anie_202105285 crossref_primary_10_1002_anie_202501924 crossref_primary_10_1016_j_jechem_2024_11_032 crossref_primary_10_1002_smtd_202301359 crossref_primary_10_1016_j_poly_2023_116342 crossref_primary_10_1002_ange_201800667 crossref_primary_10_1002_EXP_20210063 crossref_primary_10_1016_S1872_2067_20_63702_0 crossref_primary_10_1039_D0SC02131H crossref_primary_10_1002_ejoc_202100049 crossref_primary_10_1021_jacs_0c08595 crossref_primary_10_1038_s44221_024_00281_y crossref_primary_10_1021_jacs_8b07102 crossref_primary_10_1002_chem_202101705 crossref_primary_10_1246_bcsj_20200376 crossref_primary_10_1039_C9SC00711C crossref_primary_10_3390_cryst10030157 crossref_primary_10_1073_pnas_2316032121 crossref_primary_10_1002_ange_201916423 crossref_primary_10_1021_jacs_2c06677 crossref_primary_10_1039_D1QO01613J crossref_primary_10_1139_cjc_2020_0014 crossref_primary_10_1002_tcr_202100048 crossref_primary_10_1073_pnas_1707318114 crossref_primary_10_1039_D2QO01392D crossref_primary_10_1039_D5QO00099H crossref_primary_10_1021_acs_orglett_5c03238 crossref_primary_10_1039_D0EE03300F crossref_primary_10_1002_ange_201804929 crossref_primary_10_1002_chem_202201761 crossref_primary_10_1039_D0QO01478H crossref_primary_10_3390_molecules25061443 crossref_primary_10_1016_j_chempr_2020_04_022 crossref_primary_10_1002_anie_201916423 crossref_primary_10_1016_j_checat_2023_100807 crossref_primary_10_1515_psr_2017_0173 crossref_primary_10_1021_acs_joc_5c00532 crossref_primary_10_1002_ange_202501924 crossref_primary_10_1002_cssc_202002032 crossref_primary_10_1002_adsc_202401436 crossref_primary_10_1002_cssc_202001187 crossref_primary_10_1016_j_nanoen_2019_04_037 crossref_primary_10_1039_D0QO00276C crossref_primary_10_1038_s41929_024_01194_5 crossref_primary_10_1021_jacs_4c16003 crossref_primary_10_1055_a_1833_9025 crossref_primary_10_1002_adsc_201901253 crossref_primary_10_1002_ange_201910169 crossref_primary_10_1039_D0SC01820A crossref_primary_10_1007_s43630_021_00135_6 crossref_primary_10_1002_smtd_202300588 crossref_primary_10_1002_anie_201804929 crossref_primary_10_1016_j_chempr_2024_03_010 crossref_primary_10_1016_j_tetlet_2022_153808 crossref_primary_10_1002_anie_202015773 crossref_primary_10_1021_jacs_7b06319 crossref_primary_10_1002_anie_202406845 crossref_primary_10_1002_ange_201914390 crossref_primary_10_1002_ange_201800144 crossref_primary_10_1039_C7CC04941B crossref_primary_10_1021_jacs_0c08673 crossref_primary_10_1039_C8SC05164J crossref_primary_10_1002_anie_201709766 crossref_primary_10_1021_jacs_1c05852 crossref_primary_10_1038_s41467_022_31956_3 crossref_primary_10_1038_s41467_021_26170_6 crossref_primary_10_1039_D4QO00310A crossref_primary_10_1002_smll_202311642 crossref_primary_10_1002_chem_202304002 crossref_primary_10_1016_j_tetlet_2024_155334 crossref_primary_10_1002_adsc_202301220 crossref_primary_10_1021_jacs_9b09496 crossref_primary_10_1038_s41467_025_62876_7 crossref_primary_10_1002_ange_201709766 crossref_primary_10_1007_s11426_025_2876_7 crossref_primary_10_1016_j_cclet_2024_110582 crossref_primary_10_1002_ange_201804966 crossref_primary_10_1021_jacs_8b10250 crossref_primary_10_3762_bjoc_16_114 crossref_primary_10_1002_chem_202003424 crossref_primary_10_1002_ange_202008040 crossref_primary_10_1039_D2CS00013J crossref_primary_10_1055_a_1517_7329 crossref_primary_10_1002_chem_202402917 crossref_primary_10_1039_D5QO01036E crossref_primary_10_1002_anie_202016156 crossref_primary_10_1021_jacs_2c10553 crossref_primary_10_1002_aenm_202402942 crossref_primary_10_1021_jacs_7b08086 crossref_primary_10_1021_jacs_0c12799 crossref_primary_10_1016_j_tetlet_2018_04_060 crossref_primary_10_1021_jacs_7b11144 crossref_primary_10_1021_acscentsci_4c00970 crossref_primary_10_1002_anie_201612516 crossref_primary_10_1002_ijch_201900166 crossref_primary_10_1002_ange_201909492 crossref_primary_10_1021_acsami_5c12561 crossref_primary_10_1002_cctc_202201553 crossref_primary_10_1021_jacs_2c01735 crossref_primary_10_1039_D2QO00412G crossref_primary_10_1021_jacs_4c06122 crossref_primary_10_6023_cjoc202406018 crossref_primary_10_1002_chem_201705707 crossref_primary_10_1002_ange_201805632 crossref_primary_10_1002_adsc_202300281 crossref_primary_10_1002_anie_201910169 crossref_primary_10_1002_anie_202008630 crossref_primary_10_1002_chem_202302770 crossref_primary_10_1016_j_jphotochem_2022_114358 crossref_primary_10_1093_nsr_nwae271 crossref_primary_10_1002_solr_202000444 crossref_primary_10_1002_adsc_202300040 crossref_primary_10_1002_ejic_201900975 crossref_primary_10_1002_anie_202317333 crossref_primary_10_1002_adfm_202415558 crossref_primary_10_1021_jacs_4c08795 crossref_primary_10_1002_cjoc_202000246 crossref_primary_10_1002_anie_201913320 crossref_primary_10_1016_j_checat_2021_04_004 crossref_primary_10_1016_j_jphotochem_2020_112777 crossref_primary_10_1002_anie_201800667 crossref_primary_10_1016_j_checat_2021_04_008 crossref_primary_10_1055_s_0040_1707183 crossref_primary_10_1039_D3QO01059G crossref_primary_10_1002_anie_202003070 crossref_primary_10_1021_jacs_8b04104 crossref_primary_10_1002_anie_202319515 crossref_primary_10_1039_D1SC02503A crossref_primary_10_1002_ange_202102597 crossref_primary_10_1002_ange_202101266 crossref_primary_10_1002_cctc_202100304 crossref_primary_10_1002_anie_201800319 crossref_primary_10_1002_ange_201804445 crossref_primary_10_59761_RCR5123 crossref_primary_10_1002_ange_202011657 crossref_primary_10_1002_anie_202107253 crossref_primary_10_1039_D1QO00634G crossref_primary_10_1002_anie_202110304 crossref_primary_10_1016_j_chempr_2021_05_005 crossref_primary_10_1021_jacs_7b01016 crossref_primary_10_1021_jacs_0c09106 crossref_primary_10_1039_D2QO01605B crossref_primary_10_1002_chem_201900879 crossref_primary_10_1021_jacs_9b00193 crossref_primary_10_1002_anie_201809431 crossref_primary_10_1002_cctc_201901373 crossref_primary_10_1016_j_apenergy_2019_114414 crossref_primary_10_1055_a_1992_6707 crossref_primary_10_1002_ejoc_202000144 crossref_primary_10_1021_jacs_8b13451 crossref_primary_10_1002_ange_201805644 crossref_primary_10_1002_ange_202115110 crossref_primary_10_1002_anie_202010801 crossref_primary_10_1002_advs_202402272 crossref_primary_10_1021_jacs_4c09558 crossref_primary_10_1002_ejoc_202200326 crossref_primary_10_1002_anie_202507789 crossref_primary_10_1039_D3SC05229J crossref_primary_10_1002_ange_201708138 crossref_primary_10_1039_C9SC00302A crossref_primary_10_1002_anie_201807247 crossref_primary_10_1021_jacs_9b04303 crossref_primary_10_1002_anie_202101835 crossref_primary_10_1021_jacs_0c09363 crossref_primary_10_1038_s41467_021_26857_w crossref_primary_10_1002_ange_202206058 crossref_primary_10_1002_anie_202415715 crossref_primary_10_59761_RCR5104 crossref_primary_10_1002_anie_202301815 crossref_primary_10_1016_j_ccr_2019_213081 crossref_primary_10_1021_jacs_9b03680 crossref_primary_10_1021_jacs_9b02117 crossref_primary_10_1039_D1SC07237D crossref_primary_10_1016_j_checat_2021_12_015 crossref_primary_10_1021_jacsau_5c00374 crossref_primary_10_1021_jacs_3c12513 crossref_primary_10_1002_cctc_202100620 crossref_primary_10_1039_D2QO00528J crossref_primary_10_1016_j_mcat_2022_112788 crossref_primary_10_1002_ange_202003959 crossref_primary_10_1002_chem_202301017 crossref_primary_10_1016_j_tetlet_2021_152915 crossref_primary_10_1021_jacs_1c09484 crossref_primary_10_1021_jacs_7b13131 crossref_primary_10_1039_D2SC04463C crossref_primary_10_1002_zaac_202100077 crossref_primary_10_1039_D2QO01979E crossref_primary_10_1039_D4QO02344G crossref_primary_10_1002_adsc_201700369 crossref_primary_10_1055_s_0040_1706042 crossref_primary_10_1039_C8QO00893K crossref_primary_10_1002_ange_202319515 crossref_primary_10_1002_ange_202317333 crossref_primary_10_1021_jacs_2c11364 crossref_primary_10_1021_acs_inorgchem_5c01792 crossref_primary_10_1021_jacs_9b10870 crossref_primary_10_1002_anie_201805395 crossref_primary_10_1002_cctc_202301572 crossref_primary_10_1002_chem_202401669 crossref_primary_10_1039_C7CS00572E crossref_primary_10_1002_ange_202011738 crossref_primary_10_1021_acs_inorgchem_5c02643 crossref_primary_10_1002_chem_201901762 crossref_primary_10_1039_D3SC00919J crossref_primary_10_1002_adsc_201801289 crossref_primary_10_1002_anie_202011657 crossref_primary_10_1093_chemle_upae088 crossref_primary_10_1002_ange_201700049 crossref_primary_10_1016_j_watres_2024_121485 crossref_primary_10_1002_chem_202501148 crossref_primary_10_1002_anie_202208831 crossref_primary_10_1016_j_jphotochem_2017_09_027 crossref_primary_10_1002_cssc_201701382 crossref_primary_10_1002_chem_202502233 crossref_primary_10_1016_j_tet_2024_134386 crossref_primary_10_1021_jacs_2c01458 crossref_primary_10_1021_jacs_8b06938 crossref_primary_10_1002_adsc_202201234 crossref_primary_10_1021_jacs_4c02610 crossref_primary_10_1002_ajoc_202300580 crossref_primary_10_1038_s41467_022_32238_8 crossref_primary_10_1002_chem_201605931 crossref_primary_10_1002_ejoc_201801378 crossref_primary_10_1021_jacs_7b13616 crossref_primary_10_1002_cctc_201901266 crossref_primary_10_1002_ange_201612516 crossref_primary_10_1002_anie_201706724 crossref_primary_10_1002_ange_202113658 crossref_primary_10_1038_s41467_019_12722_4 crossref_primary_10_1016_j_cej_2022_138357 crossref_primary_10_1016_j_trechm_2019_01_008 crossref_primary_10_1002_chem_202102477 crossref_primary_10_1002_cssc_202500219 crossref_primary_10_1039_C9SC03429C crossref_primary_10_1016_j_electacta_2017_07_072 crossref_primary_10_1039_C9SC04941J crossref_primary_10_1002_anie_202215591 crossref_primary_10_1002_chem_201802907 crossref_primary_10_1021_jacs_2c07099 crossref_primary_10_1002_anie_202212083 crossref_primary_10_1002_ange_201706724 crossref_primary_10_1002_bkcs_12124 crossref_primary_10_1002_ange_202411867 crossref_primary_10_3390_ma16072835 crossref_primary_10_1016_j_jcat_2025_116318 crossref_primary_10_1016_j_chempr_2024_08_002 crossref_primary_10_3390_molecules28114275 crossref_primary_10_1002_ajoc_202300160 crossref_primary_10_1038_s41467_024_53351_w crossref_primary_10_1002_ejic_201701190 crossref_primary_10_1002_anie_201700049 crossref_primary_10_1002_anie_202113658 crossref_primary_10_1039_C9QO00536F crossref_primary_10_1021_jacs_0c03239 crossref_primary_10_1002_ange_201701329 crossref_primary_10_1039_D1QO00727K crossref_primary_10_1002_chem_202000517 crossref_primary_10_1002_ejoc_201601626 crossref_primary_10_1007_s11426_024_2259_7 crossref_primary_10_1002_celc_202100617 crossref_primary_10_1002_ange_201809601 crossref_primary_10_1016_j_checat_2022_05_021 crossref_primary_10_1039_D0SC00819B crossref_primary_10_1002_ange_202016156 crossref_primary_10_1002_adsc_202100852 crossref_primary_10_3762_bjoc_14_251 crossref_primary_10_1002_anie_202011738 crossref_primary_10_1002_cjoc_202300096 crossref_primary_10_1002_cjoc_201800455 crossref_primary_10_1002_chem_201605971 crossref_primary_10_3390_ijms25126341 crossref_primary_10_31635_ccschem_019_20180026 crossref_primary_10_1055_a_1385_9398 crossref_primary_10_1002_ange_201805395 crossref_primary_10_1002_celc_202400301 crossref_primary_10_1038_s41467_022_29462_7 crossref_primary_10_1039_C9RA01939A crossref_primary_10_1002_chem_202300796 crossref_primary_10_1021_acs_orglett_5c00799 crossref_primary_10_1007_s11426_025_2803_3 crossref_primary_10_1002_cctc_202001690 crossref_primary_10_1002_anie_201909492 crossref_primary_10_1016_j_apenergy_2019_114119 crossref_primary_10_1038_s41557_021_00732_z crossref_primary_10_1039_D5DT00419E crossref_primary_10_3390_molecules27123745 crossref_primary_10_1002_cctc_202300537 crossref_primary_10_1016_j_gresc_2025_04_005 crossref_primary_10_1002_ajoc_202300275 crossref_primary_10_1002_cptc_202000085 crossref_primary_10_1016_j_ccr_2023_215607 crossref_primary_10_1002_anie_201809601 crossref_primary_10_1039_D0CS00535E crossref_primary_10_1016_j_chempr_2025_102446 crossref_primary_10_1038_s41467_019_10441_4 crossref_primary_10_1002_anie_202115110 crossref_primary_10_1021_jacs_2c05520 crossref_primary_10_1002_ejoc_202000746 crossref_primary_10_1002_ange_202415715 crossref_primary_10_1002_adsc_202000761 crossref_primary_10_1002_ange_202010801 crossref_primary_10_1002_ejoc_202301215 crossref_primary_10_1002_chem_201802606 crossref_primary_10_1002_cptc_202300306 crossref_primary_10_1055_a_1608_5633 crossref_primary_10_1002_anie_202411867 crossref_primary_10_1007_s11426_021_1019_2 crossref_primary_10_1002_anie_201701329 crossref_primary_10_1002_chem_202101539 crossref_primary_10_1021_jacs_9b13975 crossref_primary_10_1002_ange_202105285 crossref_primary_10_1021_jacs_0c11911 crossref_primary_10_1021_jacs_9b12519 crossref_primary_10_1016_j_tetlet_2020_152369 crossref_primary_10_1002_chem_201903438 crossref_primary_10_1021_acs_inorgchem_5c01823 crossref_primary_10_1038_s41557_024_01502_3 crossref_primary_10_1093_chemle_upae111 crossref_primary_10_1039_D1SC03344A crossref_primary_10_1002_ange_201809431 crossref_primary_10_1002_EXP_20240237 crossref_primary_10_1002_celc_202100364 crossref_primary_10_1002_adma_202209552 crossref_primary_10_1002_ange_202208831 crossref_primary_10_1002_ejic_201601403 crossref_primary_10_1021_jacs_5c04000 crossref_primary_10_1002_ange_202110304 crossref_primary_10_1002_ajoc_201600512 crossref_primary_10_1063_5_0284337 crossref_primary_10_1002_ejoc_201601445 crossref_primary_10_1002_cjoc_202400276 crossref_primary_10_1002_adsc_202100260 crossref_primary_10_1021_acs_accounts_5c00342 crossref_primary_10_1002_chem_202200264 crossref_primary_10_1002_cphc_202400928 crossref_primary_10_1039_D3QO00671A crossref_primary_10_1002_ange_202101835 crossref_primary_10_1038_s41467_022_32623_3 crossref_primary_10_1002_chin_201644200 crossref_primary_10_1002_ange_201807247 crossref_primary_10_1021_jacs_7b05165 crossref_primary_10_1002_ejic_201901135 crossref_primary_10_1038_s41467_022_35249_7 crossref_primary_10_1016_j_apcatb_2021_120946 crossref_primary_10_3762_bjoc_20_59 crossref_primary_10_1038_s41929_022_00841_z crossref_primary_10_1039_D5GC03208C crossref_primary_10_1002_ejoc_202401149 crossref_primary_10_1002_ange_202107253 crossref_primary_10_1039_D2DT00345G crossref_primary_10_1002_ange_201913320 crossref_primary_10_1002_chem_201900268 crossref_primary_10_1002_chem_201800755 crossref_primary_10_1002_ange_202003070 crossref_primary_10_1021_acs_orglett_5c01020 crossref_primary_10_1021_jacs_7b10529 crossref_primary_10_1039_D0SC04542J crossref_primary_10_1002_adsc_202100205 crossref_primary_10_1002_ange_202215591 crossref_primary_10_1002_ange_202212083 crossref_primary_10_1016_j_tetlet_2020_152059 crossref_primary_10_1002_anie_202102597 crossref_primary_10_1021_jacs_0c07965 crossref_primary_10_1002_anie_202101266 crossref_primary_10_1002_ange_202008630 crossref_primary_10_1021_acs_inorgchem_5c02720 crossref_primary_10_1002_anie_201805632 crossref_primary_10_1039_D1SC03019A crossref_primary_10_1093_chemle_upaf134 crossref_primary_10_1002_cplu_202400348 crossref_primary_10_1002_anie_202206058 crossref_primary_10_1021_jacs_9b07370 crossref_primary_10_1039_D2SC05198B crossref_primary_10_1002_adsc_201800677 crossref_primary_10_1002_anie_202003959 crossref_primary_10_1016_j_jphotochem_2024_115491 crossref_primary_10_3390_org4040033 crossref_primary_10_1038_s41467_024_47568_y crossref_primary_10_1063_5_0220777 crossref_primary_10_1039_D1SC01028J crossref_primary_10_1039_C7CS00619E crossref_primary_10_1002_chem_201901397 crossref_primary_10_3762_bjoc_20_27 crossref_primary_10_1021_acs_langmuir_5c01190 crossref_primary_10_1007_s11426_020_9958_6 crossref_primary_10_1016_j_ccr_2023_215441 crossref_primary_10_1055_a_1691_0449 crossref_primary_10_1002_ejoc_201601485 crossref_primary_10_1021_acs_chemrev_5c00074 crossref_primary_10_1038_s41467_019_13524_4 crossref_primary_10_1055_a_2457_0146 crossref_primary_10_1016_S1872_2067_21_63928_1 crossref_primary_10_1002_anie_202008040 crossref_primary_10_1002_celc_201900080 crossref_primary_10_1002_anie_201804445 crossref_primary_10_1002_chem_202402333 crossref_primary_10_1038_s41467_024_49337_3 crossref_primary_10_1039_D0QO00171F crossref_primary_10_1002_ejoc_201601493 crossref_primary_10_1039_D2QO00148A crossref_primary_10_1002_chem_202300609 crossref_primary_10_1002_ange_202301815 crossref_primary_10_1002_anie_201805644 crossref_primary_10_1038_s41467_021_23447_8 crossref_primary_10_1021_jacs_2c04467 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.accounts.6b00272 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| ExternalDocumentID | 27472068 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM113105 |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YIN YZZ ZCA ~02 7X8 ABBLG ABLBI ABUFD AETEA |
| ID | FETCH-LOGICAL-a515t-b409c2893ddb8440b7f7611064c9737d2d1be8242e8e5e36eaf8c3df59b9837d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 613 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381654700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Sun Nov 09 14:41:40 EST 2025 Wed Feb 19 02:44:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a515t-b409c2893ddb8440b7f7611064c9737d2d1be8242e8e5e36eaf8c3df59b9837d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1021/acs.accounts.6b00272 |
| PMID | 27472068 |
| PQID | 1812226626 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1812226626 pubmed_primary_27472068 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-16 |
| PublicationDateYYYYMMDD | 2016-08-16 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Accounts of chemical research |
| PublicationTitleAlternate | Acc Chem Res |
| PublicationYear | 2016 |
| References | 20712320 - J Am Chem Soc. 2010 Sep 8;132(35):12299-306 20110502 - Science. 2010 Jan 29;327(5965):566-71 19569636 - J Am Chem Soc. 2009 Jul 29;131(29):9874-5 24428640 - J Am Chem Soc. 2014 Jan 29;136(4):1300-3 26439818 - J Am Chem Soc. 2015 Oct 28;137(42):13492-5 16873123 - Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1351-64 19807148 - Acc Chem Res. 2009 Dec 21;42(12):1881-9 17017787 - J Am Chem Soc. 2006 Oct 11;128(40):13076-83 17243807 - J Am Chem Soc. 2007 Jan 31;129(4):770-1 15250745 - Chem Rev. 2004 Jul;104(7):3371-404 26273964 - J Am Chem Soc. 2015 Sep 9;137(35):11526-31 15771515 - J Am Chem Soc. 2005 Mar 23;127(11):3807-16 16218613 - J Am Chem Soc. 2005 Oct 19;127(41):14204-5 27094541 - Phys Chem Chem Phys. 2016 Apr 28;18(16):11374-82 25427140 - J Am Chem Soc. 2014 Dec 17;136(50):17362-5 25232995 - J Am Chem Soc. 2014 Oct 15;136(41):14389-92 19182970 - J Phys Chem A. 2009 Mar 12;113(10):2117-26 15192224 - Science. 2004 Jun 11;304(5677):1653-6 22337565 - Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3266-70 18335937 - J Am Chem Soc. 2008 Apr 2;130(13):4250-2 20722395 - J Am Chem Soc. 2010 Sep 15;132(36):12748-56 22702235 - Chem Rev. 2012 Jul 11;112(7):4016-93 26166022 - J Am Chem Soc. 2015 Jul 29;137(29):9226-9 12914498 - Chem Rev. 2003 Aug;103(8):3263-96 25719966 - J Am Chem Soc. 2015 Mar 18;137(10):3498-501 24215561 - J Am Chem Soc. 2013 Nov 27;135(47):17735-8 25974714 - Angew Chem Int Ed Engl. 2015 May 26;54(22):6400-41 11878977 - J Am Chem Soc. 2002 Mar 13;124(10):2233-44 16144398 - J Am Chem Soc. 2005 Sep 14;127(36):12513-5 25945955 - J Am Chem Soc. 2015 May 27;137(20):6440-3 22984066 - Science. 2012 Sep 14;337(6100):1322-5 12693923 - Acc Chem Res. 2003 Apr;36(4):255-63 23343354 - Inorg Chem. 2013 Feb 4;52(3):1591-603 20925411 - Chem Rev. 2010 Dec 8;110(12):6961-7001 20215463 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5282-7 19275235 - J Am Chem Soc. 2009 Apr 1;131(12):4335-45 23506151 - J Am Chem Soc. 2013 Mar 27;135(12):4640-3 23796403 - J Am Chem Soc. 2013 Jul 10;135(27):10022-5 |
| References_xml | – reference: 19275235 - J Am Chem Soc. 2009 Apr 1;131(12):4335-45 – reference: 23796403 - J Am Chem Soc. 2013 Jul 10;135(27):10022-5 – reference: 15192224 - Science. 2004 Jun 11;304(5677):1653-6 – reference: 24215561 - J Am Chem Soc. 2013 Nov 27;135(47):17735-8 – reference: 17243807 - J Am Chem Soc. 2007 Jan 31;129(4):770-1 – reference: 25232995 - J Am Chem Soc. 2014 Oct 15;136(41):14389-92 – reference: 26166022 - J Am Chem Soc. 2015 Jul 29;137(29):9226-9 – reference: 19182970 - J Phys Chem A. 2009 Mar 12;113(10):2117-26 – reference: 27094541 - Phys Chem Chem Phys. 2016 Apr 28;18(16):11374-82 – reference: 11878977 - J Am Chem Soc. 2002 Mar 13;124(10):2233-44 – reference: 18335937 - J Am Chem Soc. 2008 Apr 2;130(13):4250-2 – reference: 15771515 - J Am Chem Soc. 2005 Mar 23;127(11):3807-16 – reference: 15250745 - Chem Rev. 2004 Jul;104(7):3371-404 – reference: 25719966 - J Am Chem Soc. 2015 Mar 18;137(10):3498-501 – reference: 20925411 - Chem Rev. 2010 Dec 8;110(12):6961-7001 – reference: 12693923 - Acc Chem Res. 2003 Apr;36(4):255-63 – reference: 20722395 - J Am Chem Soc. 2010 Sep 15;132(36):12748-56 – reference: 23506151 - J Am Chem Soc. 2013 Mar 27;135(12):4640-3 – reference: 19807148 - Acc Chem Res. 2009 Dec 21;42(12):1881-9 – reference: 20712320 - J Am Chem Soc. 2010 Sep 8;132(35):12299-306 – reference: 20110502 - Science. 2010 Jan 29;327(5965):566-71 – reference: 17017787 - J Am Chem Soc. 2006 Oct 11;128(40):13076-83 – reference: 16144398 - J Am Chem Soc. 2005 Sep 14;127(36):12513-5 – reference: 20215463 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5282-7 – reference: 22337565 - Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3266-70 – reference: 24428640 - J Am Chem Soc. 2014 Jan 29;136(4):1300-3 – reference: 19569636 - J Am Chem Soc. 2009 Jul 29;131(29):9874-5 – reference: 16873123 - Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1351-64 – reference: 23343354 - Inorg Chem. 2013 Feb 4;52(3):1591-603 – reference: 22984066 - Science. 2012 Sep 14;337(6100):1322-5 – reference: 25427140 - J Am Chem Soc. 2014 Dec 17;136(50):17362-5 – reference: 22702235 - Chem Rev. 2012 Jul 11;112(7):4016-93 – reference: 26273964 - J Am Chem Soc. 2015 Sep 9;137(35):11526-31 – reference: 16218613 - J Am Chem Soc. 2005 Oct 19;127(41):14204-5 – reference: 25974714 - Angew Chem Int Ed Engl. 2015 May 26;54(22):6400-41 – reference: 12914498 - Chem Rev. 2003 Aug;103(8):3263-96 – reference: 26439818 - J Am Chem Soc. 2015 Oct 28;137(42):13492-5 – reference: 25945955 - J Am Chem Soc. 2015 May 27;137(20):6440-3 |
| SSID | ssj0002467 |
| Score | 2.6677883 |
| Snippet | Redox events in which an electron and proton are exchanged in a concerted elementary step are commonly referred to as proton-coupled electron transfers... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1546 |
| SubjectTerms | Alkenes - chemistry Amides - chemical synthesis Catalysis Chemistry Techniques, Synthetic - methods Cyclization Electrons Heterocyclic Compounds, 1-Ring - chemical synthesis Ketones - chemistry Lactones - chemical synthesis Models, Chemical Oxidation-Reduction Protons Stereoisomerism |
| Title | Synthetic Applications of Proton-Coupled Electron Transfer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27472068 https://www.proquest.com/docview/1812226626 |
| Volume | 49 |
| WOSCitedRecordID | wos000381654700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3KvgaXZs0F19kjA0fdAy8sLfSJqcgSDvXTfDfe5K1zBdB8KUvoZAc0nzfd05zPkKupHHlMIioFjEKlFR2aKY00JBJprlQ2vp2DK8PcjhU47Ee1Qm3qv6tsjkT_UFtS-Ny5DcOiZAqIP--m3xQ5xrlqqu1hcYqaTGkMm5Xy_GyW3jEvYMsQlSHcqVVc3UuCm9SU-GEvR9DdS0cVPkewb-QTA82g-3_TnOHbNU0M-gu9sUuWYFij2z0Gne3fXL79FUg98PhoPujhh2UeTCals5XuFfOJ-9gg35tlBN4WMthekBeBv3n3j2tfRRoimxlRjPUcAaFFbM2U5x3MplLgbAvuNGSSRvZMAOFWA0KYmAC0lwZZvNYZ1q58UOyVpQFHJOAhSnqHQyljQy3iqPYk4DrNUjU4wigTS6bsCS4IFd8SAso51WyDEybHC1im0wWDTUSp4yjjlAnf3j7lGwiZxEurRuKM9LK8SuFc7JuPmdv1fTCbwB8DkeP38_puX0 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Applications+of+Proton-Coupled+Electron+Transfer&rft.jtitle=Accounts+of+chemical+research&rft.au=Gentry%2C+Emily+C&rft.au=Knowles%2C+Robert+R&rft.date=2016-08-16&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=49&rft.issue=8&rft.spage=1546&rft_id=info:doi/10.1021%2Facs.accounts.6b00272&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |