Variability in Greenhouse Gas Emissions from Permafrost Thaw Ponds

Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO₂ and CH₄. We q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography Jg. 55; H. 1; S. 115 - 133
Hauptverfasser: Laurion, Isabelle, Vincent, Warwick F., MacIntyre, Sally, Retamal, Leira, Dupont, Christiane, Francus, Pierre, Pienitz, Reinhard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Waco, TX American Society of Limnology and Oceanography 01.01.2010
Schlagworte:
ISSN:0024-3590, 1939-5590
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO₂ and CH₄. We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO₂ and all of them in CH₄. Gas fluxes as estimated from dissolved gas concentrations using a wind-based model varied from -20.5 to 114.4 mmol CO₂ m⁻² d⁻¹, with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH₄ m⁻² d⁻¹. From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates.
AbstractList Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO sub(2) and CH sub(4). We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO sub(2) and all of them in CH sub(4). Gas fluxes as estimated from dissolved gas concentrations using a wind-based model varied from 220.5 to 114.4 mmol CO sub(2) m super(-2) d super(-1), with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH sub(4) m super(-2) d super(-1). From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates.
Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO 2 and CH 4 . We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO 2 and all of them in CH 4 . Gas fluxes as estimated from dissolved gas concentrations using a wind‐based model varied from 220.5 to 114.4 mmol CO 2 m ‐2 d ‐1 , with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH 4 m ‐2 d ‐1 . From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates.
Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO2 and CH4. We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO2 and all of them in CH4. Gas fluxes as estimated from dissolved gas concentrations using a wind‐based model varied from 220.5 to 114.4 mmol CO2 m‐2 d‐1, with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH4 m‐2 d‐1. From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates.
Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO₂ and CH₄. We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO₂ and all of them in CH₄. Gas fluxes as estimated from dissolved gas concentrations using a wind-based model varied from -20.5 to 114.4 mmol CO₂ m⁻² d⁻¹, with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH₄ m⁻² d⁻¹. From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates.
Author Retamal, Leira
Laurion, Isabelle
MacIntyre, Sally
Francus, Pierre
Vincent, Warwick F.
Dupont, Christiane
Pienitz, Reinhard
Author_xml – sequence: 1
  givenname: Isabelle
  surname: Laurion
  fullname: Laurion, Isabelle
– sequence: 2
  givenname: Warwick F.
  surname: Vincent
  fullname: Vincent, Warwick F.
– sequence: 3
  givenname: Sally
  surname: MacIntyre
  fullname: MacIntyre, Sally
– sequence: 4
  givenname: Leira
  surname: Retamal
  fullname: Retamal, Leira
– sequence: 5
  givenname: Christiane
  surname: Dupont
  fullname: Dupont, Christiane
– sequence: 6
  givenname: Pierre
  surname: Francus
  fullname: Francus, Pierre
– sequence: 7
  givenname: Reinhard
  surname: Pienitz
  fullname: Pienitz, Reinhard
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22576463$$DView record in Pascal Francis
BookMark eNqFkE9rGzEQxUVwIbaTD5BDYC-lp3Ul7Y52dcihNa5bMIkPbq5iVpaIgrxKpQ3B375a7FDooT3NH95vmPdmZNKH3hByw-iirpj87MOC0zwALNiCMgYXZMpkJUsASSdkSimvyyr3l2SW0jOlVALAlHx9xOiwc94Nx8L1xToa0z-F12SKNaZidXApudCnwsZwKLYmHjB3aSh2T_hWbEO_T1fkg0WfzPW5zsnPb6vd8nu5eVj_WH7ZlAgMoNRcAvJGwx5rabUxtus6vpfM2pZ3TVsL3XFBTSs6gy3IutZtnpmlrWy4FtWcfDrdfYnh16tJg8rPaeM99iY_rJpaMBC8qbLy41mJSaO3EXvtknqJ7oDxqDiHRtRi1DUnnc6WUjRWaTfgkP0OEZ1XjKoxXOWDGsNVAIqpMdxMsr_I9-P_Yu5OzJvz5vh_QG3uH8YNADvztyf-OQ0h_nFDBeetENVv5IuZyA
CODEN LIOCAH
CitedBy_id crossref_primary_10_1371_journal_pone_0078204
crossref_primary_10_1139_as_2022_0021
crossref_primary_10_1007_s10498_011_9154_z
crossref_primary_10_5194_bg_12_3009_2015
crossref_primary_10_1002_2017MS001028
crossref_primary_10_1002_ppp_2057
crossref_primary_10_1038_ngeo2654
crossref_primary_10_1002_ece3_2179
crossref_primary_10_1007_s10533_015_0139_7
crossref_primary_10_1002_eco_1323
crossref_primary_10_1007_s11356_019_06436_9
crossref_primary_10_1016_j_scitotenv_2020_139671
crossref_primary_10_5194_bg_14_5189_2017
crossref_primary_10_3390_rs11060657
crossref_primary_10_1080_00207233_2014_942535
crossref_primary_10_1002_lno_12288
crossref_primary_10_1111_bor_12000
crossref_primary_10_5194_bg_12_3469_2015
crossref_primary_10_1016_j_watres_2020_116176
crossref_primary_10_1080_01431161_2020_1752954
crossref_primary_10_1002_lno_10941
crossref_primary_10_1002_lno_11634
crossref_primary_10_5194_bg_8_3341_2011
crossref_primary_10_1088_1748_9326_aab046
crossref_primary_10_3390_v12111204
crossref_primary_10_1139_as_2016_0017
crossref_primary_10_3389_fenvs_2022_1029334
crossref_primary_10_3390_w13111605
crossref_primary_10_1002_2017JG004047
crossref_primary_10_5194_bg_12_7223_2015
crossref_primary_10_1029_2025JG008847
crossref_primary_10_1016_j_scitotenv_2017_11_342
crossref_primary_10_1002_ecs2_3099
crossref_primary_10_1890_100004
crossref_primary_10_1088_1748_9326_8_3_035026
crossref_primary_10_5194_bg_10_4641_2013
crossref_primary_10_1016_j_rse_2024_114047
crossref_primary_10_1029_2011JG001699
crossref_primary_10_1016_j_rser_2025_115712
crossref_primary_10_1016_j_watres_2016_05_060
crossref_primary_10_1016_j_scitotenv_2024_176713
crossref_primary_10_5194_bg_8_565_2011
crossref_primary_10_1038_srep34456
crossref_primary_10_1002_lno_10311
crossref_primary_10_1016_j_scitotenv_2016_12_067
crossref_primary_10_1111_ele_70200
crossref_primary_10_1007_s10750_015_2240_2
crossref_primary_10_1038_s41467_023_38806_w
crossref_primary_10_1007_s10533_012_9790_4
crossref_primary_10_1093_femsec_fiw117
crossref_primary_10_1657_1938_4246_46_1_84
crossref_primary_10_5194_bg_13_5849_2016
crossref_primary_10_1029_2018JG004786
crossref_primary_10_1371_journal_pone_0126231
crossref_primary_10_1088_1748_9326_9_7_075001
crossref_primary_10_1080_15481603_2024_2427309
crossref_primary_10_1002_2016GL071772
crossref_primary_10_3390_microorganisms7110486
crossref_primary_10_1002_eap_1552
crossref_primary_10_1029_2021GL097492
crossref_primary_10_3390_w9030228
crossref_primary_10_1007_s10533_019_00599_w
crossref_primary_10_1371_journal_pone_0159642
crossref_primary_10_1007_s00027_011_0244_1
crossref_primary_10_5194_bg_18_2791_2021
crossref_primary_10_1016_j_sedgeo_2016_01_012
crossref_primary_10_1016_j_tim_2020_04_002
crossref_primary_10_1016_j_pss_2010_07_002
crossref_primary_10_1016_j_jhydrol_2025_133964
crossref_primary_10_1111_ecog_01667
crossref_primary_10_1002_2015JG003133
crossref_primary_10_5194_bg_12_7279_2015
crossref_primary_10_1007_s13157_019_01140_3
crossref_primary_10_1007_s10533_016_0261_1
crossref_primary_10_1016_j_agrformet_2020_108184
crossref_primary_10_1002_lol2_10063
crossref_primary_10_1088_1755_1315_226_1_012023
crossref_primary_10_1029_2020JG006038
crossref_primary_10_1111_gcb_17120
crossref_primary_10_1002_lno_11660
crossref_primary_10_1038_s41598_018_36519_5
crossref_primary_10_1080_15230430_2020_1753412
crossref_primary_10_5194_bg_12_5941_2015
crossref_primary_10_5194_bg_14_3561_2017
crossref_primary_10_1007_s10021_015_9944_z
crossref_primary_10_5194_tc_15_1399_2021
crossref_primary_10_5194_bg_13_175_2016
crossref_primary_10_1002_2015JG003184
crossref_primary_10_1002_jgrg_20092
crossref_primary_10_3389_fmicb_2019_01656
crossref_primary_10_1007_s00300_014_1555_1
crossref_primary_10_1139_as_2017_0047
crossref_primary_10_1657_1938_4246_46_1_121
crossref_primary_10_1002_2016JF003956
crossref_primary_10_1016_j_scitotenv_2022_161314
crossref_primary_10_1038_ngeo2578
crossref_primary_10_1089_ast_2018_2012
crossref_primary_10_5194_bg_13_13_2016
crossref_primary_10_1007_s10661_016_5646_z
crossref_primary_10_1016_j_jhydrol_2016_11_028
crossref_primary_10_1139_as_2016_0048
crossref_primary_10_5194_essd_9_317_2017
crossref_primary_10_3390_rs5041498
crossref_primary_10_1111_gcb_14289
crossref_primary_10_1371_journal_pone_0188223
crossref_primary_10_1016_j_watres_2024_121204
crossref_primary_10_3390_microorganisms11020428
crossref_primary_10_1134_S1064229322602414
crossref_primary_10_3389_fmicb_2015_00192
crossref_primary_10_1029_2019JG005078
crossref_primary_10_1038_s41598_018_27770_x
crossref_primary_10_1007_s00027_019_0682_8
crossref_primary_10_1111_1462_2920_15260
crossref_primary_10_1038_s41598_019_47041_7
crossref_primary_10_1002_lno_12362
crossref_primary_10_1029_2010GL044164
crossref_primary_10_1016_j_scitotenv_2021_146737
crossref_primary_10_1088_1748_9326_10_5_054016
crossref_primary_10_5194_tc_14_2607_2020
crossref_primary_10_1007_s12665_022_10640_1
crossref_primary_10_1016_j_isprsjprs_2018_03_026
crossref_primary_10_1016_j_earscirev_2020_103433
crossref_primary_10_1016_j_jhydrol_2025_133343
crossref_primary_10_5194_bg_12_977_2015
crossref_primary_10_1007_s10021_012_9585_4
crossref_primary_10_1016_j_scitotenv_2019_07_220
crossref_primary_10_1029_2020JG005889
crossref_primary_10_5194_bg_13_4411_2016
crossref_primary_10_1007_s10498_017_9325_7
crossref_primary_10_1002_lno_11560
crossref_primary_10_1007_s11430_023_1286_5
crossref_primary_10_1128_mSphere_00334_20
crossref_primary_10_1088_1748_9326_ad1433
crossref_primary_10_1007_s11284_017_1502_z
crossref_primary_10_1139_facets_2022_0163
crossref_primary_10_3389_feart_2021_617662
crossref_primary_10_1029_2010GB003951
crossref_primary_10_1016_j_scitotenv_2021_151250
crossref_primary_10_1029_2018GB005979
crossref_primary_10_1016_j_scitotenv_2020_144201
crossref_primary_10_1007_s00300_013_1336_2
crossref_primary_10_3389_feart_2019_00005
crossref_primary_10_1029_2024GL114541
crossref_primary_10_5194_tc_8_1177_2014
crossref_primary_10_1007_s13280_011_0218_5
crossref_primary_10_5194_bg_10_5349_2013
crossref_primary_10_1029_2020JG005810
crossref_primary_10_1073_pnas_2006024117
crossref_primary_10_1139_cjfas_2013_0241
crossref_primary_10_1088_1748_9326_ac1193
crossref_primary_10_1029_2020JG005938
crossref_primary_10_2980_18_3_3469
crossref_primary_10_1016_j_envpol_2023_123098
crossref_primary_10_1016_j_trac_2025_118153
crossref_primary_10_1038_srep31312
crossref_primary_10_1029_2011GB004237
crossref_primary_10_2980_18_3_3463
crossref_primary_10_1038_ismej_2010_108
crossref_primary_10_1657_1938_4246_46_1_251
crossref_primary_10_5194_bg_12_7129_2015
crossref_primary_10_1002_2015JG003053
crossref_primary_10_1139_er_2017_0007
crossref_primary_10_1002_lno_10126
crossref_primary_10_3390_rs10020167
crossref_primary_10_1002_2015GL066501
crossref_primary_10_1093_ismeco_ycaf009
crossref_primary_10_1016_j_agee_2022_108110
crossref_primary_10_1029_2022JG006793
crossref_primary_10_1038_s41467_019_09592_1
crossref_primary_10_1007_s10533_015_0099_y
crossref_primary_10_1088_1748_9326_abc913
crossref_primary_10_1007_s10533_024_01124_4
crossref_primary_10_1029_2017JG004379
crossref_primary_10_1134_S0026261719060043
ContentType Journal Article
Copyright Copyright 2010 American Society of Limnology and Oceanography, Inc.
2010, by the Association for the Sciences of Limnology and Oceanography, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2010 American Society of Limnology and Oceanography, Inc.
– notice: 2010, by the Association for the Sciences of Limnology and Oceanography, Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QH
7SN
7TG
7TV
7UA
C1K
F1W
H96
H97
KL.
L.G
DOI 10.4319/lo.2010.55.1.0115
DatabaseName CrossRef
Pascal-Francis
Aqualine
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Pollution Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 1939-5590
EndPage 133
ExternalDocumentID 22576463
10_4319_lo_2010_55_1_0115
LNO20105510115
20622866
Genre article
GeographicLocations Canada
Quebec
Eastern Canada
PN, Arctic
GeographicLocations_xml – name: PN, Arctic
GroupedDBID -~X
..I
0R~
1OC
2AX
2WC
33P
5GY
85S
8WZ
A6W
AAESR
AAFWJ
AAHBH
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCUV
ABPPZ
ABPVG
ABSQW
ABXSQ
ACAHQ
ACCZN
ACGFS
ACHIC
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGUYK
AGXDD
AGYGG
AHBTC
AHHXC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AQVQM
AUFTA
AZFZN
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
C1A
D0L
DCZOG
DEVKO
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
F5P
GENNL
GODZA
H13
HGLYW
H~9
IPSME
JBS
JEB
JENOY
JFNAL
JLS
JPM
JST
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MW2
MXFUL
MXSTM
O66
O9-
OK1
P2P
P2W
RLO
RNS
ROL
SA0
SUPJJ
TN5
UPT
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
YQT
YR2
ZCA
ZZTAW
~02
0ZS
1OB
24P
42X
AAHHS
AAYJJ
ABDPE
ABEFU
ABTAH
ACCFJ
ACKIV
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHJTV
AIWBW
AJBDE
ECGQY
HGD
JAAYA
JAV
JBMMH
JHFFW
JKQEH
JLXEF
JSODD
MVM
NHB
SAMSI
UAO
VOH
VQA
XOL
YV5
YXE
ZCG
ZY4
AAYXX
AETEA
AGHNM
CITATION
LH4
IQODW
7QH
7SN
7TG
7TV
7UA
C1K
F1W
H96
H97
KL.
L.G
ID FETCH-LOGICAL-a5155-c295a27c5da49fceefbbb2d91ff82b7846cb260e86bea85944c82601f08972c63
IEDL.DBID WIN
ISICitedReferencesCount 197
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272759900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3590
IngestDate Tue Oct 07 09:37:23 EDT 2025
Mon Jul 21 09:15:50 EDT 2025
Tue Nov 18 22:25:40 EST 2025
Sat Nov 29 05:54:03 EST 2025
Wed Jan 22 16:36:29 EST 2025
Thu Jul 03 21:38:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords atmosphere
ponds
carbon dioxide
models
bacteria
thermal stratification
air-water interface
concentration
covariance
North America
greenhouse gas
optical properties
prokaryotes
depth
permafrost
photochemistry
winds
methane
soils
organic carbon
climate change
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5155-c295a27c5da49fceefbbb2d91ff82b7846cb260e86bea85944c82601f08972c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.4319/lo.2010.55.1.0115
PQID 746156273
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_746156273
pascalfrancis_primary_22576463
crossref_citationtrail_10_4319_lo_2010_55_1_0115
crossref_primary_10_4319_lo_2010_55_1_0115
wiley_primary_10_4319_lo_2010_55_1_0115_LNO20105510115
jstor_primary_20622866
PublicationCentury 2000
PublicationDate January 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January 2010
PublicationDecade 2010
PublicationPlace Waco, TX
PublicationPlace_xml – name: Waco, TX
PublicationTitle Limnology and oceanography
PublicationYear 2010
Publisher American Society of Limnology and Oceanography
Publisher_xml – name: American Society of Limnology and Oceanography
SSID ssj0009555
Score 2.4138637
Snippet Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Marine and continental quaternary
Pollution, environment geology
Soils
Surficial geology
Title Variability in Greenhouse Gas Emissions from Permafrost Thaw Ponds
URI https://www.jstor.org/stable/20622866
https://onlinelibrary.wiley.com/doi/abs/10.4319%2Flo.2010.55.1.0115
https://www.proquest.com/docview/746156273
Volume 55
WOSCitedRecordID wos000272759900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1939-5590
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009555
  issn: 0024-3590
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1939-5590
  dateEnd: 20221213
  omitProxy: false
  ssIdentifier: ssj0009555
  issn: 0024-3590
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5K24cx2O8yb13QQ58G7mxZkuXHtV3YIKRlrFvfhKRIbSHYoU439t9PJzlpw2CDsUeDLOw7ne670-k-gANX1UxQz3NnMXVTmDrXzMjcM49EBJU3Jmp6Uk-n8uKiOduC49VdmNQfYp1wQ8uI-zUauDaRhSS4POyROe9SYRbnh-UhApuwD5csGue3T9N7jXd5YjGgLK94M5xs4hzvfpthwzel8kSsldR9EJdPPBcbQPQ-nI3-aPz4v_zJE3g0wFHyPq2fp7Dl2mfw8NQ63Q69rJ_D0dcQT6d23j_JdUsusVTnqrvtHbnUPUHCOEy59QSvqpAFbvUe75KQ5ZX-QRZdO-tfwPn4w5fjj_lAvZBr5HzJLW24prXlM80aHxxp0Jmhs6b0XlJTB9BiTYiEnBTGackbxqzE5mS-kE1Nraj2YLvtWvcSCKWlkbULsMFTJhwzupQB18w4K7U2hc-gWAld2aEvOdJjzFWIT1BCat4plI_iXJUK5ZPB2_Uri9SU40-D96Im1yNpISiVQmQw2lDt3QAMwpioMiArXasgSjxJ0a0L4lVhfYe4NyC_DETU7N8_Q02mpzTSkZb4-OpfX3wND1IBA2aB9mF7eXPr3sCu_b687m9GsHPyeXw-GUUb-AXpKQJX
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_qVVAEP1tcP2oefBK27uaS3eyjWo-K61Wklb6FJJe0hWP36F4V_3tnNntnD0FBfFzIht35SH4zmfwG4KUfl6LgQabeUeoms2VqhFVpEIEaEYyDtb2m63I6Vaen1ectOFjdhYn8EOuEG3lGv16Tg1NCmrwc9zwiyZy3sTJLyv18n5DNDdgWaE5yBNsHXyYn9TXyXRk7GXCRjmU1nG7SNK9_m2Rjf4olilQvaToUWYi9LjbA6HVI2-9Jk3v_52_uw90Bk7I30YgewJZvHsKdI-dNMxBaP4K3XzGojpzeP9hFw86oXue8veo8OzMdo65xlHfrGN1XYQta7wNdKGHLc_OdLdpm1u3AyeT98bvDdOi_kBpq_JI6XknDSydnRlQBd1NUnOWzKg9BcVsicnEWwyGvCuuNkpUQThFDWchUVXJXjHdh1LSNfwyM89yq0iN2CFwUXliTKwQ3MylyY2wWEshWUtduICenHhlzjUEKSUjPW03y0VLqXJN8Eni1fmURmTn-NHi3V-V6JM8KzlVRJLC3odtfAygSQ3NKgK2UrVGUdJxiGo_i1WjkGPwi_Eug6FX798_Q9fSI9z1Jc3p88q8vvoBbh8efal1_mH58CrdjRQOlhZ7BaHl55Z_DTfdtedFd7g2u8BMsuQYD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7yKKUU-kgT6j5SHXoqOLFlSZaPbbdLS5dNKE3JTUiylAQWe4k3Cf331VjebZZCCyVHgyzsGY3mm9FoPoC3riiZoJ6nzmLqJjNlqpmRqWceiQgKb0yv6Uk5ncrT0-p4A0bLuzCxP8Qq4YaW0e_XaOBuXnu08uDzsEnmrI2VWZwf5AeIbDZhm_FKBPPcHn0bn0xuNd_lkcmAsrTg1XC6idMc_jHJmn-KJYpYL6m7IDIfuS7WwOhtSNv7pPHju_mbJ_BowKTkfVxET2HDNTvw8Mg63QwNrZ_Bhx8hqI49vX-Si4acYb3OeXvVOXKmO4KscZh36wjeVyFz3O89Xighi3N9Q-ZtU3e7cDL-9P3j53TgX0g1Er-kllZc09LyWrPKB28aFGdoXeXeS2rKgFysCeGQk8I4LXnFmJXYocxnsiqpFcUebDVt454DoTQ3snQBO3jKhGNG5zKAm5qzXGuT-QSypdSVHZqTI0fGTIUgBSWkZq1C-SjOVa5QPgm8W70yj505_jZ4r1flaiTNBKVSiAT213T7ewBGYkwUCZClslUQJR6n6MYF8aqwyEPwG-BfAqJX7b8_Q02mR7TnJM3x8cX_vvgG7h-PxmryZfr1JTyIBQ2YFXoFW4vLK_ca7tnrxUV3uT9Ywi-tlQV-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+in+greenhouse+gas+emissions+from+permafrost+thaw+ponds&rft.jtitle=Limnology+and+oceanography&rft.au=LAURION%2C+Isabelle&rft.au=VINCENT%2C+Warwick+F&rft.au=MACLNTYRE%2C+Sally&rft.au=RETAMAL%2C+Leira&rft.date=2010-01-01&rft.pub=American+Society+of+Limnology+and+Oceanography&rft.issn=0024-3590&rft.volume=55&rft.issue=1&rft.spage=115&rft.epage=133&rft_id=info:doi/10.4319%2Flo.2010.55.1.0115&rft.externalDBID=n%2Fa&rft.externalDocID=22576463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3590&client=summon