Variability in Greenhouse Gas Emissions from Permafrost Thaw Ponds
Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO₂ and CH₄. We q...
Gespeichert in:
| Veröffentlicht in: | Limnology and oceanography Jg. 55; H. 1; S. 115 - 133 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Waco, TX
American Society of Limnology and Oceanography
01.01.2010
|
| Schlagworte: | |
| ISSN: | 0024-3590, 1939-5590 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO₂ and CH₄. We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO₂ and all of them in CH₄. Gas fluxes as estimated from dissolved gas concentrations using a wind-based model varied from -20.5 to 114.4 mmol CO₂ m⁻² d⁻¹, with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH₄ m⁻² d⁻¹. From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates. |
|---|---|
| AbstractList | Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO sub(2) and CH sub(4). We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO sub(2) and all of them in CH sub(4). Gas fluxes as estimated from dissolved gas concentrations using a wind-based model varied from 220.5 to 114.4 mmol CO sub(2) m super(-2) d super(-1), with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH sub(4) m super(-2) d super(-1). From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates. Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO 2 and CH 4 . We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO 2 and all of them in CH 4 . Gas fluxes as estimated from dissolved gas concentrations using a wind‐based model varied from 220.5 to 114.4 mmol CO 2 m ‐2 d ‐1 , with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH 4 m ‐2 d ‐1 . From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates. Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO2 and CH4. We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO2 and all of them in CH4. Gas fluxes as estimated from dissolved gas concentrations using a wind‐based model varied from 220.5 to 114.4 mmol CO2 m‐2 d‐1, with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH4 m‐2 d‐1. From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates. Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of years. Photochemical and microbial transformation will liberate a fraction of this carbon to the atmosphere in the form of CO₂ and CH₄. We quantified these fluxes in a series of permafrost thaw ponds in the Canadian Subarctic and Arctic and further investigated how optical properties of the carbon pool, the type of microbial assemblages, and light and mixing regimes influenced the rate of gas release. Most ponds were supersaturated in CO₂ and all of them in CH₄. Gas fluxes as estimated from dissolved gas concentrations using a wind-based model varied from -20.5 to 114.4 mmol CO₂ m⁻² d⁻¹, with negative fluxes recorded in arctic ponds colonized by benthic microbial mats, and from 0.03 to 5.62 mmol CH₄ m⁻² d⁻¹. From a time series set of measurements in a subarctic pond over 8 d, calculated gas fluxes were on average 40% higher when using a newly derived equation for the gas transfer coefficient developed from eddy covariance measurements. The daily variation in gas fluxes was highly dependent on mixed layer dynamics. At the seasonal timescale, persistent thermal stratification and gas buildup at depth indicated that autumnal overturn is a critically important period for greenhouse gas emissions from subarctic ponds. These results underscore the increasingly important contribution of permafrost thaw ponds to greenhouse gas emissions and the need to account for local and regional variability in their limnological properties for global estimates. |
| Author | Retamal, Leira Laurion, Isabelle MacIntyre, Sally Francus, Pierre Vincent, Warwick F. Dupont, Christiane Pienitz, Reinhard |
| Author_xml | – sequence: 1 givenname: Isabelle surname: Laurion fullname: Laurion, Isabelle – sequence: 2 givenname: Warwick F. surname: Vincent fullname: Vincent, Warwick F. – sequence: 3 givenname: Sally surname: MacIntyre fullname: MacIntyre, Sally – sequence: 4 givenname: Leira surname: Retamal fullname: Retamal, Leira – sequence: 5 givenname: Christiane surname: Dupont fullname: Dupont, Christiane – sequence: 6 givenname: Pierre surname: Francus fullname: Francus, Pierre – sequence: 7 givenname: Reinhard surname: Pienitz fullname: Pienitz, Reinhard |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22576463$$DView record in Pascal Francis |
| BookMark | eNqFkE9rGzEQxUVwIbaTD5BDYC-lp3Ul7Y52dcihNa5bMIkPbq5iVpaIgrxKpQ3B375a7FDooT3NH95vmPdmZNKH3hByw-iirpj87MOC0zwALNiCMgYXZMpkJUsASSdkSimvyyr3l2SW0jOlVALAlHx9xOiwc94Nx8L1xToa0z-F12SKNaZidXApudCnwsZwKLYmHjB3aSh2T_hWbEO_T1fkg0WfzPW5zsnPb6vd8nu5eVj_WH7ZlAgMoNRcAvJGwx5rabUxtus6vpfM2pZ3TVsL3XFBTSs6gy3IutZtnpmlrWy4FtWcfDrdfYnh16tJg8rPaeM99iY_rJpaMBC8qbLy41mJSaO3EXvtknqJ7oDxqDiHRtRi1DUnnc6WUjRWaTfgkP0OEZ1XjKoxXOWDGsNVAIqpMdxMsr_I9-P_Yu5OzJvz5vh_QG3uH8YNADvztyf-OQ0h_nFDBeetENVv5IuZyA |
| CODEN | LIOCAH |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0078204 crossref_primary_10_1139_as_2022_0021 crossref_primary_10_1007_s10498_011_9154_z crossref_primary_10_5194_bg_12_3009_2015 crossref_primary_10_1002_2017MS001028 crossref_primary_10_1002_ppp_2057 crossref_primary_10_1038_ngeo2654 crossref_primary_10_1002_ece3_2179 crossref_primary_10_1007_s10533_015_0139_7 crossref_primary_10_1002_eco_1323 crossref_primary_10_1007_s11356_019_06436_9 crossref_primary_10_1016_j_scitotenv_2020_139671 crossref_primary_10_5194_bg_14_5189_2017 crossref_primary_10_3390_rs11060657 crossref_primary_10_1080_00207233_2014_942535 crossref_primary_10_1002_lno_12288 crossref_primary_10_1111_bor_12000 crossref_primary_10_5194_bg_12_3469_2015 crossref_primary_10_1016_j_watres_2020_116176 crossref_primary_10_1080_01431161_2020_1752954 crossref_primary_10_1002_lno_10941 crossref_primary_10_1002_lno_11634 crossref_primary_10_5194_bg_8_3341_2011 crossref_primary_10_1088_1748_9326_aab046 crossref_primary_10_3390_v12111204 crossref_primary_10_1139_as_2016_0017 crossref_primary_10_3389_fenvs_2022_1029334 crossref_primary_10_3390_w13111605 crossref_primary_10_1002_2017JG004047 crossref_primary_10_5194_bg_12_7223_2015 crossref_primary_10_1029_2025JG008847 crossref_primary_10_1016_j_scitotenv_2017_11_342 crossref_primary_10_1002_ecs2_3099 crossref_primary_10_1890_100004 crossref_primary_10_1088_1748_9326_8_3_035026 crossref_primary_10_5194_bg_10_4641_2013 crossref_primary_10_1016_j_rse_2024_114047 crossref_primary_10_1029_2011JG001699 crossref_primary_10_1016_j_rser_2025_115712 crossref_primary_10_1016_j_watres_2016_05_060 crossref_primary_10_1016_j_scitotenv_2024_176713 crossref_primary_10_5194_bg_8_565_2011 crossref_primary_10_1038_srep34456 crossref_primary_10_1002_lno_10311 crossref_primary_10_1016_j_scitotenv_2016_12_067 crossref_primary_10_1111_ele_70200 crossref_primary_10_1007_s10750_015_2240_2 crossref_primary_10_1038_s41467_023_38806_w crossref_primary_10_1007_s10533_012_9790_4 crossref_primary_10_1093_femsec_fiw117 crossref_primary_10_1657_1938_4246_46_1_84 crossref_primary_10_5194_bg_13_5849_2016 crossref_primary_10_1029_2018JG004786 crossref_primary_10_1371_journal_pone_0126231 crossref_primary_10_1088_1748_9326_9_7_075001 crossref_primary_10_1080_15481603_2024_2427309 crossref_primary_10_1002_2016GL071772 crossref_primary_10_3390_microorganisms7110486 crossref_primary_10_1002_eap_1552 crossref_primary_10_1029_2021GL097492 crossref_primary_10_3390_w9030228 crossref_primary_10_1007_s10533_019_00599_w crossref_primary_10_1371_journal_pone_0159642 crossref_primary_10_1007_s00027_011_0244_1 crossref_primary_10_5194_bg_18_2791_2021 crossref_primary_10_1016_j_sedgeo_2016_01_012 crossref_primary_10_1016_j_tim_2020_04_002 crossref_primary_10_1016_j_pss_2010_07_002 crossref_primary_10_1016_j_jhydrol_2025_133964 crossref_primary_10_1111_ecog_01667 crossref_primary_10_1002_2015JG003133 crossref_primary_10_5194_bg_12_7279_2015 crossref_primary_10_1007_s13157_019_01140_3 crossref_primary_10_1007_s10533_016_0261_1 crossref_primary_10_1016_j_agrformet_2020_108184 crossref_primary_10_1002_lol2_10063 crossref_primary_10_1088_1755_1315_226_1_012023 crossref_primary_10_1029_2020JG006038 crossref_primary_10_1111_gcb_17120 crossref_primary_10_1002_lno_11660 crossref_primary_10_1038_s41598_018_36519_5 crossref_primary_10_1080_15230430_2020_1753412 crossref_primary_10_5194_bg_12_5941_2015 crossref_primary_10_5194_bg_14_3561_2017 crossref_primary_10_1007_s10021_015_9944_z crossref_primary_10_5194_tc_15_1399_2021 crossref_primary_10_5194_bg_13_175_2016 crossref_primary_10_1002_2015JG003184 crossref_primary_10_1002_jgrg_20092 crossref_primary_10_3389_fmicb_2019_01656 crossref_primary_10_1007_s00300_014_1555_1 crossref_primary_10_1139_as_2017_0047 crossref_primary_10_1657_1938_4246_46_1_121 crossref_primary_10_1002_2016JF003956 crossref_primary_10_1016_j_scitotenv_2022_161314 crossref_primary_10_1038_ngeo2578 crossref_primary_10_1089_ast_2018_2012 crossref_primary_10_5194_bg_13_13_2016 crossref_primary_10_1007_s10661_016_5646_z crossref_primary_10_1016_j_jhydrol_2016_11_028 crossref_primary_10_1139_as_2016_0048 crossref_primary_10_5194_essd_9_317_2017 crossref_primary_10_3390_rs5041498 crossref_primary_10_1111_gcb_14289 crossref_primary_10_1371_journal_pone_0188223 crossref_primary_10_1016_j_watres_2024_121204 crossref_primary_10_3390_microorganisms11020428 crossref_primary_10_1134_S1064229322602414 crossref_primary_10_3389_fmicb_2015_00192 crossref_primary_10_1029_2019JG005078 crossref_primary_10_1038_s41598_018_27770_x crossref_primary_10_1007_s00027_019_0682_8 crossref_primary_10_1111_1462_2920_15260 crossref_primary_10_1038_s41598_019_47041_7 crossref_primary_10_1002_lno_12362 crossref_primary_10_1029_2010GL044164 crossref_primary_10_1016_j_scitotenv_2021_146737 crossref_primary_10_1088_1748_9326_10_5_054016 crossref_primary_10_5194_tc_14_2607_2020 crossref_primary_10_1007_s12665_022_10640_1 crossref_primary_10_1016_j_isprsjprs_2018_03_026 crossref_primary_10_1016_j_earscirev_2020_103433 crossref_primary_10_1016_j_jhydrol_2025_133343 crossref_primary_10_5194_bg_12_977_2015 crossref_primary_10_1007_s10021_012_9585_4 crossref_primary_10_1016_j_scitotenv_2019_07_220 crossref_primary_10_1029_2020JG005889 crossref_primary_10_5194_bg_13_4411_2016 crossref_primary_10_1007_s10498_017_9325_7 crossref_primary_10_1002_lno_11560 crossref_primary_10_1007_s11430_023_1286_5 crossref_primary_10_1128_mSphere_00334_20 crossref_primary_10_1088_1748_9326_ad1433 crossref_primary_10_1007_s11284_017_1502_z crossref_primary_10_1139_facets_2022_0163 crossref_primary_10_3389_feart_2021_617662 crossref_primary_10_1029_2010GB003951 crossref_primary_10_1016_j_scitotenv_2021_151250 crossref_primary_10_1029_2018GB005979 crossref_primary_10_1016_j_scitotenv_2020_144201 crossref_primary_10_1007_s00300_013_1336_2 crossref_primary_10_3389_feart_2019_00005 crossref_primary_10_1029_2024GL114541 crossref_primary_10_5194_tc_8_1177_2014 crossref_primary_10_1007_s13280_011_0218_5 crossref_primary_10_5194_bg_10_5349_2013 crossref_primary_10_1029_2020JG005810 crossref_primary_10_1073_pnas_2006024117 crossref_primary_10_1139_cjfas_2013_0241 crossref_primary_10_1088_1748_9326_ac1193 crossref_primary_10_1029_2020JG005938 crossref_primary_10_2980_18_3_3469 crossref_primary_10_1016_j_envpol_2023_123098 crossref_primary_10_1016_j_trac_2025_118153 crossref_primary_10_1038_srep31312 crossref_primary_10_1029_2011GB004237 crossref_primary_10_2980_18_3_3463 crossref_primary_10_1038_ismej_2010_108 crossref_primary_10_1657_1938_4246_46_1_251 crossref_primary_10_5194_bg_12_7129_2015 crossref_primary_10_1002_2015JG003053 crossref_primary_10_1139_er_2017_0007 crossref_primary_10_1002_lno_10126 crossref_primary_10_3390_rs10020167 crossref_primary_10_1002_2015GL066501 crossref_primary_10_1093_ismeco_ycaf009 crossref_primary_10_1016_j_agee_2022_108110 crossref_primary_10_1029_2022JG006793 crossref_primary_10_1038_s41467_019_09592_1 crossref_primary_10_1007_s10533_015_0099_y crossref_primary_10_1088_1748_9326_abc913 crossref_primary_10_1007_s10533_024_01124_4 crossref_primary_10_1029_2017JG004379 crossref_primary_10_1134_S0026261719060043 |
| ContentType | Journal Article |
| Copyright | Copyright 2010 American Society of Limnology and Oceanography, Inc. 2010, by the Association for the Sciences of Limnology and Oceanography, Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright 2010 American Society of Limnology and Oceanography, Inc. – notice: 2010, by the Association for the Sciences of Limnology and Oceanography, Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7QH 7SN 7TG 7TV 7UA C1K F1W H96 H97 KL. L.G |
| DOI | 10.4319/lo.2010.55.1.0115 |
| DatabaseName | CrossRef Pascal-Francis Aqualine Ecology Abstracts Meteorological & Geoastrophysical Abstracts Pollution Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Pollution Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Oceanography |
| EISSN | 1939-5590 |
| EndPage | 133 |
| ExternalDocumentID | 22576463 10_4319_lo_2010_55_1_0115 LNO20105510115 20622866 |
| Genre | article |
| GeographicLocations | Canada Quebec Eastern Canada PN, Arctic |
| GeographicLocations_xml | – name: PN, Arctic |
| GroupedDBID | -~X ..I 0R~ 1OC 2AX 2WC 33P 5GY 85S 8WZ A6W AAESR AAFWJ AAHBH AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCUV ABPPZ ABPVG ABSQW ABXSQ ACAHQ ACCZN ACGFS ACHIC ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AENEX AEUPB AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGUYK AGXDD AGYGG AHBTC AHHXC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AQVQM AUFTA AZFZN AZVAB BFHJK BHBCM BMNLL BMXJE BRXPI C1A D0L DCZOG DEVKO DPXWK DRFUL DRSTM DU5 E3Z EBS EJD F5P GENNL GODZA H13 HGLYW H~9 IPSME JBS JEB JENOY JFNAL JLS JPM JST LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MW2 MXFUL MXSTM O66 O9- OK1 P2P P2W RLO RNS ROL SA0 SUPJJ TN5 UPT WBKPD WH7 WIH WIK WIN WOHZO WUPDE WXSBR WYISQ YQT YR2 ZCA ZZTAW ~02 0ZS 1OB 24P 42X AAHHS AAYJJ ABDPE ABEFU ABTAH ACCFJ ACKIV ADULT AEEZP AEQDE AEUQT AFPWT AHJTV AIWBW AJBDE ECGQY HGD JAAYA JAV JBMMH JHFFW JKQEH JLXEF JSODD MVM NHB SAMSI UAO VOH VQA XOL YV5 YXE ZCG ZY4 AAYXX AETEA AGHNM CITATION LH4 IQODW 7QH 7SN 7TG 7TV 7UA C1K F1W H96 H97 KL. L.G |
| ID | FETCH-LOGICAL-a5155-c295a27c5da49fceefbbb2d91ff82b7846cb260e86bea85944c82601f08972c63 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 197 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272759900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0024-3590 |
| IngestDate | Tue Oct 07 09:37:23 EDT 2025 Mon Jul 21 09:15:50 EDT 2025 Tue Nov 18 22:25:40 EST 2025 Sat Nov 29 05:54:03 EST 2025 Wed Jan 22 16:36:29 EST 2025 Thu Jul 03 21:38:04 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | atmosphere ponds carbon dioxide models bacteria thermal stratification air-water interface concentration covariance North America greenhouse gas optical properties prokaryotes depth permafrost photochemistry winds methane soils organic carbon climate change |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5155-c295a27c5da49fceefbbb2d91ff82b7846cb260e86bea85944c82601f08972c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.4319/lo.2010.55.1.0115 |
| PQID | 746156273 |
| PQPubID | 23462 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_746156273 pascalfrancis_primary_22576463 crossref_citationtrail_10_4319_lo_2010_55_1_0115 crossref_primary_10_4319_lo_2010_55_1_0115 wiley_primary_10_4319_lo_2010_55_1_0115_LNO20105510115 jstor_primary_20622866 |
| PublicationCentury | 2000 |
| PublicationDate | January 2010 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – month: 01 year: 2010 text: January 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Waco, TX |
| PublicationPlace_xml | – name: Waco, TX |
| PublicationTitle | Limnology and oceanography |
| PublicationYear | 2010 |
| Publisher | American Society of Limnology and Oceanography |
| Publisher_xml | – name: American Society of Limnology and Oceanography |
| SSID | ssj0009555 |
| Score | 2.4138637 |
| Snippet | Arctic climate change is leading to accelerated melting of permafrost and the mobilization of soil organic carbon pools that have accumulated over thousands of... |
| SourceID | proquest pascalfrancis crossref wiley jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 115 |
| SubjectTerms | Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Marine and continental quaternary Pollution, environment geology Soils Surficial geology |
| Title | Variability in Greenhouse Gas Emissions from Permafrost Thaw Ponds |
| URI | https://www.jstor.org/stable/20622866 https://onlinelibrary.wiley.com/doi/abs/10.4319%2Flo.2010.55.1.0115 https://www.proquest.com/docview/746156273 |
| Volume | 55 |
| WOSCitedRecordID | wos000272759900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1939-5590 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009555 issn: 0024-3590 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1939-5590 dateEnd: 20221213 omitProxy: false ssIdentifier: ssj0009555 issn: 0024-3590 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED5K24cx2O8yb13QQ58G7mxZkuXHtV3YIKRlrFvfhKRIbSHYoU439t9PJzlpw2CDsUeDLOw7ne670-k-gANX1UxQz3NnMXVTmDrXzMjcM49EBJU3Jmp6Uk-n8uKiOduC49VdmNQfYp1wQ8uI-zUauDaRhSS4POyROe9SYRbnh-UhApuwD5csGue3T9N7jXd5YjGgLK94M5xs4hzvfpthwzel8kSsldR9EJdPPBcbQPQ-nI3-aPz4v_zJE3g0wFHyPq2fp7Dl2mfw8NQ63Q69rJ_D0dcQT6d23j_JdUsusVTnqrvtHbnUPUHCOEy59QSvqpAFbvUe75KQ5ZX-QRZdO-tfwPn4w5fjj_lAvZBr5HzJLW24prXlM80aHxxp0Jmhs6b0XlJTB9BiTYiEnBTGackbxqzE5mS-kE1Nraj2YLvtWvcSCKWlkbULsMFTJhwzupQB18w4K7U2hc-gWAld2aEvOdJjzFWIT1BCat4plI_iXJUK5ZPB2_Uri9SU40-D96Im1yNpISiVQmQw2lDt3QAMwpioMiArXasgSjxJ0a0L4lVhfYe4NyC_DETU7N8_Q02mpzTSkZb4-OpfX3wND1IBA2aB9mF7eXPr3sCu_b687m9GsHPyeXw-GUUb-AXpKQJX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_qVVAEP1tcP2oefBK27uaS3eyjWo-K61Wklb6FJJe0hWP36F4V_3tnNntnD0FBfFzIht35SH4zmfwG4KUfl6LgQabeUeoms2VqhFVpEIEaEYyDtb2m63I6Vaen1ectOFjdhYn8EOuEG3lGv16Tg1NCmrwc9zwiyZy3sTJLyv18n5DNDdgWaE5yBNsHXyYn9TXyXRk7GXCRjmU1nG7SNK9_m2Rjf4olilQvaToUWYi9LjbA6HVI2-9Jk3v_52_uw90Bk7I30YgewJZvHsKdI-dNMxBaP4K3XzGojpzeP9hFw86oXue8veo8OzMdo65xlHfrGN1XYQta7wNdKGHLc_OdLdpm1u3AyeT98bvDdOi_kBpq_JI6XknDSydnRlQBd1NUnOWzKg9BcVsicnEWwyGvCuuNkpUQThFDWchUVXJXjHdh1LSNfwyM89yq0iN2CFwUXliTKwQ3MylyY2wWEshWUtduICenHhlzjUEKSUjPW03y0VLqXJN8Eni1fmURmTn-NHi3V-V6JM8KzlVRJLC3odtfAygSQ3NKgK2UrVGUdJxiGo_i1WjkGPwi_Eug6FX798_Q9fSI9z1Jc3p88q8vvoBbh8efal1_mH58CrdjRQOlhZ7BaHl55Z_DTfdtedFd7g2u8BMsuQYD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7yKKUU-kgT6j5SHXoqOLFlSZaPbbdLS5dNKE3JTUiylAQWe4k3Cf331VjebZZCCyVHgyzsGY3mm9FoPoC3riiZoJ6nzmLqJjNlqpmRqWceiQgKb0yv6Uk5ncrT0-p4A0bLuzCxP8Qq4YaW0e_XaOBuXnu08uDzsEnmrI2VWZwf5AeIbDZhm_FKBPPcHn0bn0xuNd_lkcmAsrTg1XC6idMc_jHJmn-KJYpYL6m7IDIfuS7WwOhtSNv7pPHju_mbJ_BowKTkfVxET2HDNTvw8Mg63QwNrZ_Bhx8hqI49vX-Si4acYb3OeXvVOXKmO4KscZh36wjeVyFz3O89Xighi3N9Q-ZtU3e7cDL-9P3j53TgX0g1Er-kllZc09LyWrPKB28aFGdoXeXeS2rKgFysCeGQk8I4LXnFmJXYocxnsiqpFcUebDVt454DoTQ3snQBO3jKhGNG5zKAm5qzXGuT-QSypdSVHZqTI0fGTIUgBSWkZq1C-SjOVa5QPgm8W70yj505_jZ4r1flaiTNBKVSiAT213T7ewBGYkwUCZClslUQJR6n6MYF8aqwyEPwG-BfAqJX7b8_Q02mR7TnJM3x8cX_vvgG7h-PxmryZfr1JTyIBQ2YFXoFW4vLK_ca7tnrxUV3uT9Ywi-tlQV- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+in+greenhouse+gas+emissions+from+permafrost+thaw+ponds&rft.jtitle=Limnology+and+oceanography&rft.au=LAURION%2C+Isabelle&rft.au=VINCENT%2C+Warwick+F&rft.au=MACLNTYRE%2C+Sally&rft.au=RETAMAL%2C+Leira&rft.date=2010-01-01&rft.pub=American+Society+of+Limnology+and+Oceanography&rft.issn=0024-3590&rft.volume=55&rft.issue=1&rft.spage=115&rft.epage=133&rft_id=info:doi/10.4319%2Flo.2010.55.1.0115&rft.externalDBID=n%2Fa&rft.externalDocID=22576463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3590&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3590&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3590&client=summon |